Solution

Class 10 - Mathematics

2020-21 paper 5

Part-A

1. Our fraction terminates only when it's denominator is in form of $2^{n_{5}}$. So the expression is in the form of $2^{\mathrm{n}} 5^{\mathrm{m}}$

Multiplying and dividing the expression by $5^{3} \times 2^{2}$
$\frac{23}{2^{35}}=\frac{23 \times 53 \times 2^{2}}{2^{352} \times 5^{3} \times 2^{2}}$
$=\frac{11500}{10^{5}}=0.115$
OR
No.
According to Euclid's division lemma,
$\mathrm{a}=3 \mathrm{q}+\mathrm{r}$, where $0 \leq \mathrm{r}<3$
and r is an integer. Therefore, the values of r can be 0,1 or 2 .
2. Let the number of John's marbles be x.

Therefore, number of Jivanti's marble $=45-x$
After losing 5 marbles,
Number of John's marbles $=x-5$
Number of Jivanti's marbles $=45-x-5=40-x$
Given that the product of their marbles is 124 .
$\therefore(\mathrm{x}-5)(40-\mathrm{x})=124$
$\Rightarrow \mathrm{x}^{2}-45 \mathrm{x}+324=0$
3. No.

The Condition for no solution is: $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ (parallel lines)
Given pair of equations,
$\mathrm{x}=2 \mathrm{y}$ and $\mathrm{y}=2 \mathrm{x}$
or $\mathrm{x}-2 \mathrm{y}=0$ and $2 \mathrm{x}-\mathrm{y}=0$;
Comparing with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$;
Here, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-2, \mathrm{c}_{1}=0$;
And $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=-1, \mathrm{c}_{2}=0$;
$\mathrm{a}_{1} / \mathrm{a}_{2}=1 / 2$
$\mathrm{b}_{1} / \mathrm{b}_{2}=-2 /-1=2$
Here, $\mathrm{a}_{1} / \mathrm{a}_{2} \neq \mathrm{b}_{1} / \mathrm{b}_{2}$.
Hence, the given pair of linear equations has unique solution.
4.

Now, In rt. $\triangle O C A$
$A O^{2}=O C^{2}+A C^{2}$
$\Rightarrow A C^{2}=5^{2}-3^{2}$
$\Rightarrow A C=4$
We know, $O C \perp A B$
$\therefore A C=B C$
Hence, $A C=2(4)=8 \mathrm{~cm}$
5. Here, $\mathrm{a}_{\mathrm{n}}=3 \mathrm{n}^{2}+5$

Since nth term is not linear in n. So, it is not an A.P

Let a be the first term and d be the common difference of the given AP. Then, $\mathrm{S}_{\mathrm{n}}=\frac{n}{2} \cdot[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$,
$\therefore 3\left(S_{8}-S_{4}\right)=3\left[\frac{8}{2}(2 a+7 d)-\frac{4}{2}(2 a+3 d)\right]$
$=3[4(2 a+7 d)-2(2 a+3 d)]=6(2 a+11 d)$
$=\frac{12}{2} \cdot(2 a+11 d)=S_{12}$.
Hence, $\mathrm{S}_{12}=3\left(\mathrm{~S}_{8}-\mathrm{S}_{4}\right)$.
6. 0.6, 1.7, 2.8, 3.9...

First term $=\mathrm{a}=0.6$
Common difference (d) = Second term -First term
$=$ Third term - Second term and so on
Therefore, Common difference (d) $=1.7-0.6=1.1$
7. $x^{2}-2 x=(-2)(3-x)$
$\Rightarrow x^{2}-2 x=-6+2 x$
$\Rightarrow x^{2}-2 x-2 x+6=0$
$\Rightarrow x^{2}-4 x+6=0$
Here, degree of equation is 2 .
Therefore, it is a Quadratic Equation.
OR
Given quadratic equation is $3 \mathrm{x}^{2}-4 \mathrm{x}+1=0$.
$\therefore \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(-4)^{2}-4(3)(1)=16-12>0$
Hence, the roots are real and distinct.
8. We know, tangent and radius of a circle are perpendicular to each other at point of contact
\therefore Angle between the radii $=360^{\circ}-90^{\circ}-90^{\circ}-30^{\circ}=150^{\circ}$
9. $\mathrm{PQ}=\mathrm{PR}=5 \mathrm{~cm}$ (Length of Tangents from same external point are always equal)
and $\mathrm{PQ}=\mathrm{QS}$ (perpendicular from center of the circle to the chord bisects the chord)
$\therefore \mathrm{PS}=2 \mathrm{PQ}$
$=2 \times 5=10 \mathrm{~cm}$
OR

Now,
$A B+C D=B C+A D$
$\Rightarrow 12+14=15+\mathrm{AD}$
$\Rightarrow A D=11 \mathrm{~cm}$
10. In $\triangle \mathrm{CEB}$ and $\triangle \mathrm{CDA}$
$\angle \mathrm{C}=\angle \mathrm{C}$ [Common]
$\angle C E B=\angle C D A\left[E a c h 90^{\circ}\right]$
$\therefore \triangle$ CEB $\sim \triangle C D A ~[A A ~-~ S i m i l a r i t y] ~] ~$
then, $\frac{C E}{C D}=\frac{C B}{C A}$ [Corresponding sides of 2 similar triangles are proportional]
$\Rightarrow \mathrm{CE} \times \mathrm{CA}=\mathrm{CB} \times \mathrm{CD}$
Hence proved.
11. We have $a_{1}=11, a_{2}=22$ and $a_{3}=33$
$a_{2}-a_{1}=11$
$a_{3}-a_{2}=11$
Clearly, the difference of successive terms is same, therefore given list of numbers form an AP.
12. We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$

Therefore, $\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$
or, $\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}+3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$
or, $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$
13. L.H.S. $=\tan ^{2} \theta-\sin ^{2} \theta$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta=\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \sin ^{2} \theta$
$=\tan ^{2} \theta \sin ^{2} \theta=$ R.H.S.
Hence Proved
14. Thickness of the $\log =\frac{\text { volume }}{l \times b}=\frac{1.104}{2.3 \times 0.75} \mathrm{~m}=0.64 \mathrm{~m}$

Number of planks $=\frac{\text { thickness of the } \log }{\text { thickeness of one plank }}=\frac{0.64}{0.04}=16$
15. Since $(5 x+2),(4 x-1)$ and $(x+2)$ are in AP, we have
$(4 x-1)-(5 x+2)=(x+2)-(4 x-1)$
$\Rightarrow 4 x-1-5 x-2=x+2-4 x+1$
$\Rightarrow-x-3=-3 x+3$
$\Rightarrow 2 \mathrm{x}=6$
$\Rightarrow \mathrm{x}=3$.
16. In out of 52 playing cards, 4 jacks, 4 queens and 4 kings are removed, then the remaining cards are left, $\mathrm{n}(\mathrm{S})=52-3 \times 4=40$
Let $E_{1}=$ Event of getting a card whose value is 7
$E=$ Card value 7 may be of a spade, a diamond, a club or a heart
So, $n\left(E_{1}\right)=4$
$\therefore P\left(E_{1}\right)=\frac{n\left(E_{1}\right)}{n(S)}=\frac{4}{40}=\frac{1}{10}$
OR
Two dice are thrown at the same time. [given]
So, total number of possible outcomes $=36$
We have different number on both dice.
So, number of possible outcomes
$=36$ \{ Number of possible outcomes for same number on both dice\}
= 36-6 = 30
\therefore Required probability $=\frac{30}{36}=\frac{5}{6}$
17. i. (b) Let us redraw the figure as follows:

Now, Coordinates of C and B are $C(3,2)$ and $B(8,7)$.
E divides CB internally in the ratio $3: 2$.
Therefore, the coordinates of E, by applying the section formula, are
$\left(\frac{3 \times 8+2 \times 3}{3+2}, \frac{3 \times 7+2 \times 2}{3+2}\right)=(6,5)$
ii. (c) Area of the $\triangle \mathrm{ECD}=\frac{1}{2}[6(2-2)+3(2-5)+10(5-2)]$ $=\frac{1}{2}[3 \times-3+10 \times 3]=10.5$ square unit
iii. (a) The coordinates of the flower plants of Ajay and Deepak are (3, 7) and $(10,2)$ respectively. Therefore, the distance between plants of Ajay and Deepak $=\sqrt{(10-3)^{2}+(7-2)^{2}}$
$=\sqrt{74}=8.60$ unit
iv. (d) 5 units
v. (b) 7 units
18. i. (a) 26 m
ii. (c) Claim 1 would be correct if $n>m, n>r$ and Claim 3 would be correct if ABJ is a right triangle.
iii. (c) $P R^{2}=P Q \cdot R Q$
iv. (d) $\frac{A B}{B D}=\frac{A J}{A H}$
v. (c) $114 \mathrm{~cm}^{2}$
19. i. (d) 60
ii. (b) 39.71
iii. (c) 11
iv. (b) frequency of the class preceding the modal class
v. (d) 3 Median = Mode +2 Mean
20. i. (c) $8028 \mathrm{~cm}^{3}$
ii. (b) $3900 \mathrm{~cm}^{2}$
iii. (c) 214 cm
iv. (b) 24
v. (a) $8700 \mathrm{~cm}^{2}$

Part-B

21. Let us assume that $6+\sqrt{ } 2$ is a rational number.

So we can write this number as
$6+\sqrt{ } 2=a / b$
Here a and b are two co-prime numbers and b is not equal to 0
Subtract 6 both side we get
$\sqrt{ } 2=\mathrm{a} / \mathrm{b}-6$
$\sqrt{ } 2=(a-6 b) / b$
Here a and b are integers so $(a-6 b) / b$ is a rational number. So $\sqrt{ } 2$ should be a rational number. But $\sqrt{ } 2$ is an irrational number. It is a contradiction.
Hence result is $6+\sqrt{ } 2$ is a irrational number
22. $P(9 a-2,-b)$ divides the line segment joining $A(3 a+1,-3)$ and $B(8 a, 5)$ in the ratio $3: 1$

Then, by section formula
Coordinates of $P=\left(\frac{3 \times 8 a+1 \times(3 a+1)}{3+1}, \frac{3 \times 5+1 \times(-3)}{3+1}\right)$
$\Rightarrow(9 a-2,-b)=\left(\frac{24 a+3 a+1}{4}, \frac{15-3}{4}\right)$
$\Rightarrow(9 a-2,-b)=\left(\frac{27 a+1}{4}, 3\right)$
$\Rightarrow 9 a-2=\frac{27 a+1}{4}$ and $-b=3$
$\Rightarrow 36 \mathrm{a}-8=27 \mathrm{a}+1$ and $\mathrm{b}=-3$
$\Rightarrow 9 \mathrm{a}=9$
$\Rightarrow \mathrm{a}=1$ and $\mathrm{b}=-3$
$\mathrm{B}(-2,-3)$
The points of trisection means that the points which divide the line into three equal parts. From the figure, it is clear that C, and D are these two points. Let $C\left(x_{1}, y_{1}\right)$ and $D\left(x_{2}, y_{2}\right)$ are the points of trisection of the line segment joining the given points i.e., $\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Let $\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=\mathrm{k}$, Point C divides BC and CA as: $\mathrm{BC}=\mathrm{kCA}=\mathrm{CD}+\mathrm{DA}=\mathrm{k}+\mathrm{k}=2 \mathrm{k}$
Hence the ratio between BC and CA is: $\frac{B C}{C A}=\frac{k}{2 k}=\frac{1}{2}$
Therefore, point C divides $B A$ internally in the ratio 1:2 then by section formula we have that if a point $P(x, y)$ divides two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in the ratio $\mathrm{m}: \mathrm{n}$ then, the point (x, y) is given by
$(\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Therefore $\mathrm{C}(\mathrm{x}, \mathrm{y})$ divides $\mathrm{B}(-2,-3)$ and $\mathrm{A}(4,-1)$ in the ratio 1:2, then
$C(x, y)=\left(\frac{(1 \times 4)+(2 \times-2)}{1+2}, \frac{(1 \times-1)+(2 \times-3)}{1+2}\right)$
$C(x, y)=\left(\frac{4-4}{1+2}, \frac{-1-6}{1+2}\right)$
$C(x, y)=\left(0, \frac{-7}{3}\right)$
Point D divides the BD and DA as: $\mathrm{DA}=\mathrm{kBD}=\mathrm{BC}+\mathrm{CD}=\mathrm{k}+\mathrm{k}=2 \mathrm{k}$
Hence the ratio between BD and DA is: $\frac{B D}{D A}=\frac{2 k}{k}=\frac{2}{1}$
The point D divides the line BA in the ratio 2:1
So now applying section formula again we get,
$D(x, y)=\left(\frac{(2 \times 4)+(1 \times-2)}{2+1}, \frac{(2 \times-1)+(1 \times-3)}{2+1}\right)$
$D(x, y)=\left(\frac{8-2}{3}, \frac{-2-3}{3}\right)$
$D(x, y)=\left(\frac{6}{3}, \frac{-5}{3}\right)$
$D(x, y)=\left(2, \frac{-5}{3}\right)$
23. Let α, β be the zeroes of the polynomial. then
$\alpha+\beta=\sqrt{2}$ and $\alpha \beta=-\frac{3}{2}$
The quadratic polynomial
$f(x)=(x-\alpha)(x-\beta)$
$=\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$=x^{2}-\sqrt{2} x-\frac{3}{2}$
Now, $\mathrm{f}(\mathrm{x})=x^{2}-\sqrt{2} x-\frac{3}{2}$
$\Rightarrow f(x)=\frac{1}{2}\left(2 x^{2}-2 \sqrt{2} x-3\right)$
$\Rightarrow f(x)=\frac{1}{2}\left(2 x^{2}-3 \sqrt{2} x+\sqrt{2} x-3\right)$
$f(x)=\frac{1}{2}\{\sqrt{2} x(\sqrt{2} x-3)+(\sqrt{2} x-3)\}$
$\Rightarrow f(x)=\frac{1}{2}(\sqrt{2} x-3)(\sqrt{2} x+1)$
Now for $\mathrm{f}(\mathrm{x})=0$, we get
$x=\frac{3}{\sqrt{2}}$ or, $x=-\frac{1}{\sqrt{2}}$
Hence, the zeroes of $f(x)$ are $\frac{3}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$.
24. We have to Construct a triangle similar to a given equilateral $\triangle \mathrm{PQR}$ with side 5 cm such that each of its side is $\frac{6}{7}$ of the corresponding sides of $\triangle \mathrm{PQR}$. We write the steps of construction as follows:
Steps of construction :
i. Draw a line segment $\mathrm{QR}=5 \mathrm{~cm}$.
ii. With Q as centre and radius $=\mathrm{PQ}=5 \mathrm{~cm}$, draw an arc.
iii. With R as centre and radius $=\mathrm{PR}=5 \mathrm{~cm}$, draw another arc meeting the arc drawn in step 2 at the point P .
iv. Join PQ and PR to obtain $\triangle P Q R$.
v. Below $Q R$, construct an acute $\angle R Q X$,
vi. Along QX , mark off seven points $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots \ldots . . \mathrm{Q}_{7}$ such that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3} \ldots \ldots . .=\mathrm{Q}_{6} \mathrm{Q}_{7}$
vii. Join $\mathrm{Q}_{7} \mathrm{R}$.
viii. Draw $\mathrm{Q}_{6} \mathrm{R}^{\prime}| | \mathrm{Q}_{7} \mathrm{R}$.
ix. From R' draw R'P' || RP.

Hence, $P^{\prime} Q R^{\prime}$ is the required triangle.

25. Let us first draw a right $\triangle \mathrm{ABC}$

Now, we have given that, $\tan A=\frac{B C}{A B}=\frac{4}{3}$

Therefore, if $\mathrm{BC}=4 \mathrm{k}$, then $\mathrm{AB}=3 \mathrm{k}$, where k is any positive integer.
Now, by using the Pythagoras Theorem, we have
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=(4 \mathrm{k})^{2}+(3 \mathrm{k})^{2}=25 \mathrm{k}$
So, $A C=5 k$
Now, we can write all the trigonometric ratios using their definitions
$\sin A=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$
$\cos A=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
Therefore, $\cot \mathrm{A}=\frac{1}{\tan A}=\frac{3}{4}, \operatorname{cosec} A=\frac{1}{\sin A}=\frac{5}{4}$ and $\sec A=\frac{1}{\cos A}=\frac{5}{3}$
OR
Given that: $\sin \theta+\cos \theta=\sqrt{3}$
or $(\sin \theta+\cos \theta)^{2}=3$
or $\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3$
$2 \sin \theta \cos \theta=2\left[\right.$ As $\left.\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
or $\sin \theta \cos \theta=1=\sin ^{2} \theta+\cos ^{2} \theta$
LHS=1
RHS $=\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}+\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}$
Taking LCM
Substitute the value of LHS in RHS we get,
$\tan \theta+\cot \theta=1$
26. Given,

PQR is a tangent
AB II PR
$\angle \mathrm{BQR}=70$
so $\angle \mathrm{BAQ}=\angle \mathrm{BQR}=70$ (By Alternate segment theorem)
and $\angle \mathrm{ABQ}=\angle \mathrm{BQR}=70$ (Alternate interior angles)
By summing all the angles
$\angle \mathrm{BAQ}+\angle \mathrm{ABQ}+\angle \mathrm{AQB}=180$
$\angle A Q B=180-70-70$
$=40$
27. Let us find HCF of 396 and 231 using Euclid's division algorithm
$396=231 \times 1+165$
$231=165 \times 1+66$
$165=66 \times 2+33$
$66=33 \times 2+0$
So $\operatorname{HCF}(396,231)=33$
So 33 is common factor of 396 and 231
and co-prime numbers have common factor of 1 only.
\therefore The 396 and 231 are not co-prime.
28. Let Shefali's marks in Mathematics $=x$

Let Shefali's marks in English $=30-\mathrm{x}$
If, she had got 2 marks more in Mathematics, her marks would be $=x+2$

If, she had got 3 marks less in English, her marks in English would be $=30-x-3=27-x$
According to given condition:
$\Rightarrow(\mathrm{x}+2)(27-\mathrm{x})=210$
$\Rightarrow 27 x-x^{2}+54-2 x=210$
$\Rightarrow x^{2}-25 x+156=0$
Comparing quadratic equation $x^{2}-25 x+156=0$ with general form $a x^{2}+b x+c=0$,
We get $\mathrm{a}=1, \mathrm{~b}=-25$ and $\mathrm{c}=156$
Applying Quadratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{25 \pm \sqrt{(-25)^{2}-4(1)(156)}}{2 \times 1}$
$\Rightarrow \frac{25 \pm \sqrt{625-624}}{2}$
$\Rightarrow x=\frac{25 \pm \sqrt{1}}{2}$
$\Rightarrow x=\frac{25+1}{2}, \frac{25-1}{2}$
$\Rightarrow \mathrm{x}=13,12$
Therefore, Shefali's marks in Mathematics $=13$ or 12
Shefali's marks in English $=30-x=30-13=17$
Or Shefali's marks in English $=30-\mathrm{x}=30-12=18$
Therefore, her marks in Mathematics and English are $(13,17)$ or $(12,18)$.
OR
Let Rohan's present age be x years.
Then, his mother's age is $(x+26)$ years.
Rohan's age after 3 years $=(x+3)$ years.
After 3 years the age of Rohan's mother $=(x+26+3)$ years $=(x+29)$ years.
According to the question,
$(x+3)(x+29)=360$.
$\Rightarrow x^{2}+32 \mathrm{x}-273=0$.
This is the required quadratic equation.
29. We know that, if $\mathrm{x}=\alpha$ is a zero of a polynomial, then $\mathrm{x}-\alpha$ is a factor of $\mathrm{f}(\mathrm{x})$.

Since $\sqrt{2}$ and $-\sqrt{2}$ are zeros of $f(x)$.
Therefore, $(x-\sqrt{2})\{x+\sqrt{2})=x^{2}-2$ is a factor of $f(x)$.
Let us now divide $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{4}-3 \mathrm{x}^{3}-3 \mathrm{x}^{2}+6 \mathrm{x}-2$ by $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-2$
Using long division method, we obtain

$$
\begin{gathered}
x ^ { 2 } - 2 \longdiv { 2 x ^ { 4 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 6 x - 2 } (2 x ^ { 2 } - 3 x + 1 \\
\begin{array}{c}
2 x^{4}+4 x^{2} \\
-\quad+ \\
-3 x^{3}+x^{2}+6 x-2 \\
-3 x^{3}+6 x \\
+\quad- \\
-\quad x^{2}-2 \\
x^{2}-2
\end{array} \\
\frac{-\quad+}{0}
\end{gathered}
$$

Thus, Quotient $=2 x^{2}-3 x+1$ and Remainder $=0$.
By division algorithm, we have
$\mathrm{f}(\mathrm{x})=$ Quotient \times Divisor + Remainder
$\Rightarrow f(x)=\left(x^{2}-2\right)\left(2 x^{2}-3 x+1\right)+0$
$\Rightarrow \quad f(x)=(x-\sqrt{2})(x+\sqrt{2})\left(2 x^{2}-2 x-x+1\right)$
$\Rightarrow \quad f(x)=(x-\sqrt{2})(x+\sqrt{2})\{2 x(x-1)-1(x-1)\}$
$\Rightarrow \quad f(x)=(x-\sqrt{2})(x+\sqrt{2})(x-1)(2 x-1)$

On equating factors $x-\sqrt{2}, x+\sqrt{2}, \mathrm{x}-1$ and $2 \mathrm{x}-1$ to zero, we get $\mathrm{x}=\sqrt{2},-\sqrt{2}, 1, \frac{1}{2}$.
Hence, the zeros of the given polynomial are $\sqrt{2},-\sqrt{2}, 1$ and $\frac{1}{2}$.
30. Given,

Let

$\mathrm{QR}=15 \mathrm{~m}$ (height of tower)
$P Q=24 \mathrm{~m}$ (shadow of tower)
At that time $\angle \mathrm{RPQ}=\theta$
Again, let $\mathrm{YZ}=\mathrm{h}$ be a telephone pole and its shadow $\mathrm{XY}=16 \mathrm{~m}$.
The same time $\angle \mathrm{YXZ}=\theta$
Here, $A B C$ and $\triangle D E F$ both are right angles triangles.
In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{XYZ}$,
$\angle \mathrm{RPQ}=\angle \mathrm{YXZ}=\theta$
$\angle \mathrm{Q}=\angle \mathrm{Y}$ [each 90°]
$\therefore \triangle \mathrm{PQR} \cong \triangle \mathrm{XYZ}$ [by AAA similarity criterion]
Then,
$\frac{P Q}{X Y}=\frac{Q R}{Y Z}$
$\Rightarrow \frac{24}{16}=\frac{15}{h}$
$\therefore \mathrm{h}=\frac{15 \times 16}{24}=10$
Hence, the height of the telephone pole is 10 m .
OR
Given: $\triangle A B C$ in which $A D \perp B C$ and $\mathrm{BD}=3 \mathrm{CD}$.
To Prove: $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.
Proof: We have BD = 3CD.
$\therefore \mathrm{BC}=\mathrm{BD}+\mathrm{CD}=3 \mathrm{CD}+\mathrm{CD}=4 \mathrm{CD}$
$\Rightarrow \quad C D=\frac{1}{4} B C \ldots$ (i)
In $\triangle A D B, \angle A D B=90^{\circ}$.
Thus, by using Pythagoras Theorem we can write,
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \ldots$ (ii)
In $\triangle A D C, \angle A D C=90^{\circ}$
Thus, by using Pythagoras Theorem we can write,
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
On subtracting (iii) form (ii), we get
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\left[(3 \mathrm{CD})^{2}-(\mathrm{CD})^{2}\right]=8 \mathrm{CD}^{2}[\because \mathrm{BD}=3 \mathrm{CD}]$
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=8 \times \frac{1}{16} B C^{2}=\frac{1}{2} B C^{2}$ [using (i)].
$\therefore 2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2}$
Hence, $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
Hence Proved
31. The total numbers of integers between 0 and $100=99$

Numbers divisible by 7 are $7,14,21,28,35,42,49,56,63,70,77,84,91,98$
(i) Let E_{1} be the event of getting a integer divisible by 7
\therefore Number of favourable outcomes $=14$
$P\left(E_{1}\right)=\frac{14}{99}$
(ii) Let E_{2} be an event of getting a number not divisible by 7
$\therefore P\left(E_{2}\right)=1-P\left(E_{1}\right)=1-\frac{14}{99}=\frac{85}{99}$
32.

In $\triangle A B C, \tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \quad A B=\sqrt{3} B C$
In $\triangle A B D$,
$\tan 30^{\circ}=\frac{A B}{B C+40}$
$\frac{1}{\sqrt{ } 3}=\frac{A B}{B C+40}=\frac{\sqrt{ } 3 B C}{B C+40}$
$3 B C=B C+40$
$B C=20$, Hence from (i) we get
$\mathrm{AB}=20 \sqrt{ } 3=20 \times 1.73=34.6$ meter
33. First, we will convert the graph given into tabular form as shown below:

Class interval	Frequency ($\mathbf{f}_{\mathbf{i}}$)	Mid value ($\mathbf{x}_{\mathbf{i}} \mathbf{~}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	Cumulative Frequency
$1-4$	6	2.5	15	6
$4-7$	30	5.5	165	36
$7-10$	40	8.5	340	76
$10-13$	16	11.5	184	92
$13-16$	4	14.5	58	96
$16-19$	4	17.5	70	100
	$\mathrm{~N}=\sum \mathrm{f}_{\mathrm{i}}=100$		$\sum f_{i} x_{i}=832$	

i. $\mathrm{N}=100$

Mean $=\frac{\Sigma f_{i} x_{i}}{N}=\frac{832}{100}=8.32$
ii. $\frac{N}{2}=\frac{100}{2}=50$

The cumulative frequency just greater than $\frac{N}{2}$ is 76 , then the median class is $7-10$ such that
$l=7, h=10-7=3, f=40, F=36$
Median $=l+\frac{\frac{N}{2}-F}{f} \times h$
$=7+\frac{50-36}{40} \times 3$
$=7+\frac{42}{40}=7+1.05=8.05$
iii. Mode $=3$ Median -2 Mean

$$
=3 \times 8.05-2 \times 8.32=7.51
$$

34. Suppose, the digit at units and tens place of the given number be x and y respectively.
\therefore the number is $10 y+x$
After interchanging the digits, the number becomes $10 x+y$
Given: The sum of the numbers obtained by interchanging the digits and the original number is 66 .
Thus, $(10 x+y)+(10 y+x)=66$
$\Rightarrow 10 x+y+10 y+x=66$
$\Rightarrow 11 x+11 y=66$
$\Rightarrow 11(x+y)=66$
$\Rightarrow x+y=\frac{66}{11}$
$\Rightarrow x+y=6$
Also given, the two digits of the number are differing by 2 .
\therefore we have $x-y= \pm 2$....(ii)

So, we have two systems of simultaneous equations,
$x-y=2, x+y=6$
$x-y=-2, x+y=6$
Here x and y are unknowns. We have to solve the above systems of equations for x and y .

1. First, we solve the system

$$
\begin{aligned}
& x-y=2 \\
& \mathrm{x}+\mathrm{y}=6
\end{aligned}
$$

Adding the two equations,
$\Rightarrow(x-y)+(x+y)=2+6$
$\Rightarrow x-y+x+y=8$
$\Rightarrow 2 x=8$
$\Rightarrow x=\frac{8}{2}$
$\Rightarrow x=4$
Substituting the value of x in the first equation, we have
$4-y=2$
$\Rightarrow y=4-2$
$\Rightarrow y=2$
Hence, the number is $10 \times 2+4=24$
2. Now, we solve the system
$x-y=-2$
$x+y=6$
Adding the two equations, we have
$(x-y)+(x+y)=-2+6$
$\Rightarrow x-y+x+y=4$
$\Rightarrow 2 x=4$
$\Rightarrow x=\frac{4}{2}$
$\Rightarrow \mathrm{x}=2$
Substituting the value of x in the first equation,
$\Rightarrow 2-y=-2$
$\Rightarrow y=2+2$
$\Rightarrow \mathrm{y}=4$
Hence, the number is $10 \times 4+2=42$

Thus, the two numbers are 24 and 42.
$\frac{1}{2 x}+\frac{1}{3 y}=2 \ldots$ (1)
$\frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \ldots$ (2)
Let $\frac{1}{x}=\mathrm{p}$ and $\frac{1}{y}=\mathrm{q}$
Putting this in equation (1) and (2), we get
$\frac{p}{2}+\frac{q}{3}=2$ and $\frac{p}{3}+\frac{q}{2}=\frac{13}{6}$
$\Rightarrow 3 p+2 q=12$ and $6(2 p+3 q)=13(6)$
$\Rightarrow 3 p+2 q=12$ and $2 p+3 q=13$
$\Rightarrow 3 p+2 q-12=0$
(3) and
$2 p+3 q-13=0$

$\frac{p}{2(-13)-3(-12)}=\frac{q}{(-12) 2-(-13) 3}=\frac{1}{3 \times 3-2 \times 2}$
$\Rightarrow \frac{p}{-26+36}=\frac{q}{-24+39}=\frac{1}{9-4}$
$\Rightarrow \frac{p}{10}=\frac{q}{15}=\frac{1}{5} \Rightarrow \frac{p}{10}=\frac{1}{5}$ and $\frac{q}{15}=\frac{1}{5}$
$\Rightarrow \mathrm{p}=2$ and $\mathrm{q}=3$
But $\frac{1}{x}=\mathrm{p}$ and $\frac{1}{y}=\mathrm{q}$
Putting value of p and q in this we get,
$\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{2}$
35.

Identify the figure as a circle, and a right-angled triangle (and semicircle, segment also) since AOB is diameter and angle in semicircle is 90°.
Therefore, $\angle \mathrm{C}=90^{\circ}$
In right-angled $\triangle \mathrm{ABC}$,
$\mathrm{b}=$ base $=\mathrm{BC}=8 \mathrm{~cm}$
$\mathrm{a}=$ altitude $=\mathrm{AC}=6 \mathrm{~cm}$

Therefore,by Pythagoras theorem in right $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}$
$=8^{2}+6^{2}=64+36$
$\Rightarrow \mathrm{AB}^{2}=100 \mathrm{~cm}$
$\Rightarrow A B=10 \mathrm{~cm}$
Therefore, $\mathrm{r}=\frac{10}{2}=5 \mathrm{~cm}$
Therefore, Area of shaded region $=$ Area of circle - Area of right $\triangle \mathrm{ABC}$
$=\pi r^{2}-\frac{1}{2}$ Base \times Alt.
$=3.14 \times 5 \times 5-\frac{1}{2} \times 8 \times 6$
$=3.14 \times 25-8 \times 3=(78.50-24) \mathrm{cm}^{2}=54.50 \mathrm{~cm}^{2}$
Therefore, Area of shaded region $=54.50 \mathrm{~cm}^{2}$
36. Let h is height of big building,here as per the diagram.
$\mathrm{AE}=\mathrm{CD}=8 \mathrm{~m}$ (Given)
$\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=(\mathrm{h}-8) \mathrm{m}$
Let $\mathrm{AC}=\mathrm{DE}=\mathrm{x}$
Also, $\angle F B D=\angle B D E=30^{\circ}$
$\angle F B C=\angle B C A=45^{\circ}$

In $\triangle \mathrm{ACB}, \angle A=90^{\circ}$
$\tan 45^{\circ}=\frac{A B}{A C}$
$\Rightarrow \mathrm{x}=\mathrm{h}, \ldots$... i$)$
In $\triangle \mathrm{BDE}, \angle E=90^{\circ}$
$\tan 30^{\circ}=\frac{B E}{E D}$
$\Rightarrow \quad x=\sqrt{3}(h-8)$.(ii)
From (i) and (ii), we get
$h=\sqrt{3} h-8 \sqrt{3}$
$h(\sqrt{ } 3-1)=8 \sqrt{ } 3$
$\mathrm{h}=\frac{8 \sqrt{3}}{\sqrt{3}-1}=\frac{8 \sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$=\frac{1}{2} \times(24+8 \sqrt{ } 3)=\frac{1}{2} \times(24+13.84)=18.92 m$
Hence height of the multistory building is 18.92 m and the distance between two buildings is 18.92 m .

