Solution

Class 12 - Mathematics

2020-2021 - Paper-7

Section A

1. $3 x+4=0 \Rightarrow-x=\frac{4}{3}$

Direction ratios of the normal to this plane are $-1,0,0$ and $\sqrt{(-1)^{2}+0^{2}+0^{2}}=1$
Hence the required direction cosines are $-1.0,0$
2. Let \vec{a} be a vector parallel to the vector having direction ratios $4,-3$, 5 . Then, $\vec{a}=4 \hat{i}-3 \hat{j}+5 \hat{k}$. Further, let \rightarrow
b be a vector parallel to the vector having direction ratios $3,4,5$.
Then,
$\vec{b}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Let θ be the angle between the given vectors. Then.
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \vec{b} \mid}=\frac{12-12+25}{\sqrt{16+9+25} \sqrt{9+16+25}}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$
Thus, the measure of the angle between the given vectors is 60°.
3. Here, it is given the equition of plane is $z=3$

Here direction ratios of normal to the plane is $0,0,1$
Now $\sqrt{0^{2}+0^{2}+1^{2}}=1$
\therefore Direction cosines are $0,0,1$ And distance from the origin $\mathrm{P}=3$.
4. The equation of a plane with intercepts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ on x, y, and z is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \ldots$...(i)

Given, The plane is parallel to ZOX plane
\therefore Intercept on x - axis $=0 \Rightarrow \mathrm{a}=0$
and Intercept on z axis $=0 \Rightarrow \mathrm{c}=0$
Given, Intercept on y axis $=3 \Rightarrow \mathrm{~b}=3$
Using values of a, b and c in Eq. (i), we get;
$\frac{y}{3}=1 \Rightarrow y=3$
5. We have to find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is $2 \hat{i}-3 \hat{j}+6 \hat{k}$.Let $\vec{n}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\mathrm{d}=5$
We know that, equation of a plane having distance d from origin and normal vector \hat{n} is
$\vec{r} . \hat{n}=d$
$\therefore \quad \vec{r} \cdot \frac{(2 \hat{i}-3 \hat{j}+6 \hat{k})}{\sqrt{2^{2}+(-3)^{2}+(6)^{2}}}=5$
$\Rightarrow \quad \vec{r} .(2 \hat{i}-3 \hat{j}+6 \hat{k})=5 \sqrt{49}$
$\Rightarrow \quad \vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=35$
6. Let Q divides PR in the ratio $\lambda: 1$.

Then, coordinates of Q are
$\left(\frac{9 \lambda+3}{\lambda+1}, \frac{8 \lambda+2}{\lambda+1}, \frac{-10 \lambda-4}{\lambda+1}\right)$
But, coordinates of Q are given as (5, 4, -6).
$\therefore \frac{9 \lambda+3}{\lambda+1}=5, \frac{8 \lambda+2}{\lambda+1}=4, \frac{-10 \lambda-4}{\lambda+1}=-6$
All these equations give the same value of λ is equal to $\frac{1}{2}$.
So, Q divides PR in the ratio $\frac{1}{2}: 1$ or, $1: 2$.
7. Here, we have the direction ratios of \vec{r} are $6,2,-3$.

And, $\sqrt{6^{2}+2^{2}+(-3)^{2}}=\sqrt{36+4+9}=\sqrt{49}=7$.
Hence, the direction cosines of \vec{r} are $\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}$.
8. We have,max number of passengers $=250$

Profit $=1,500$ on an Executive class ticket.
$=1,000$ on an economy class ticket.
Seats for executive class ≥ 25.
Number of passengers on Executive class $=x$
number of passengers on economy class = y
Therefore given,
$\mathrm{x} \geq 25$
$y \geq 3 x$
Given $\mathrm{x}+\mathrm{y}=250$
$\mathrm{x}=250-\mathrm{y}$
$\mathrm{x} \leq 250-3 \mathrm{x}$
$4 \mathrm{x} \leq 250$
$x \leq 62.5$ or 62
$x \leq 62$.
$\mathrm{y} \geq 188$
Profit $=P=x \times 1500+1000 \times y$
Maximize P.
$P=1500 x+1000 y$
$=1500 \mathrm{x}+1000(250-\mathrm{x})$
$=500 \mathrm{x}+250,000$
Max profit is when: $\mathrm{x}=62$
Therefore,maximum profit $=500 \times 62+250,000$
$=281,000$
9.

Here, it is given that $2 \mathrm{x}-3 \mathrm{y}<4$
Taking line $2 x-3 y=4$
Taking line $2 x-3 y=4$ and substituting
$\mathrm{x}=0, \mathrm{y}==-\frac{4}{3}$
put $y=0, x=2$
Now, we draw the graph of line $2 x-3 y=4$
Put $(0,0)$ in $2 x-3 y<4$ we get $0<4$, which is true.
Therefore, shaded region above the line $2 x-3 y=4$

10. By addition theorm of probability,we have,
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)=\frac{(20+15-12)}{60}=\frac{23}{60}$.
11. Given: $P(A)=0.3$ and $P(B)=0.4$

As we know, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Since events are independent so $P(A \cap B)=0$. Therefore,
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.3+0.4$
$\Rightarrow P(A \cup B)=0.7$
12. $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap B)}{\mathrm{P}(\mathrm{A})}$
$=\frac{\frac{1}{4}}{\frac{1}{2}}$
$=\frac{1}{2}$
13. We have, $n(A)=3, n(B)=2$

Clearly,
$\mathrm{A} \cap \mathrm{B}=\{3\}$ and $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=1$
$P(A / B)=\frac{n(A \cap B)}{n(B)}=\frac{1}{2}$ and, $P(B / A)=\frac{n(A \cap B)}{n(A)}=\frac{1}{3}$
14. Total number of outcomes=
$P(4$ on first die $)=P(A)=\frac{6}{36}=\frac{1}{6}$
$\mathrm{P}(5$ on second die $)=P(B)=\frac{6}{36}=\frac{1}{6}$
$P(A \cap B)=\frac{1}{36}$
$P(A \cap B)=P(A) P(B)$
Therefore, A and B are independent events.
15. A and B be the events such that $\mathrm{P}(\mathrm{A})=\frac{5}{11}, P(B)=\frac{6}{11}$ and
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=P(\mathrm{~A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=\frac{5}{11}+\frac{6}{11}-\frac{7}{11}=\frac{4}{11}$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{P(A \cap B)}{P(B)}$
$=\frac{4}{11} \div \frac{6}{11}=\frac{4}{6}=\frac{2}{3}$
16. Let E_{1} and E_{2} be mutually exclusive. Then, $\mathrm{E}_{1} \cap \mathrm{E}_{2}=\phi$
$\therefore \mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)$
$\Rightarrow 0.4=0.3+\mathrm{x}$
$\Rightarrow \mathrm{x}=0.1$

Section B

17. i. $0.5 x+y \leq 10$
ii. $\mathrm{x}+\mathrm{y} \leq 15$
iii. 10 and 5
iv. 175
v. 250
18. We have, $\mathrm{A}_{1}: \mathrm{A}_{2}: \mathrm{A}_{3}=4: 4: 2$
$P\left(A_{1}\right)=\frac{4}{10}, P\left(A_{2}\right)=\frac{4}{10}$ and $P\left(A_{3}\right)=\frac{2}{10}$
Where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} denote the three types of flower seeds.
Let E be the event that seed germinates and \bar{E} be the event that a seed does not germinate.
$\therefore P\left(\frac{E}{A_{1}}\right)=\frac{45}{100}, P\left(\frac{E}{A_{2}}\right)=\frac{60}{100}$ and $P\left(\frac{E}{A_{3}}\right)=\frac{35}{100}$ And $P\left(\frac{\bar{E}}{A_{1}}\right)=\frac{55}{100}, P\left(\frac{\bar{E}}{A_{2}}\right)=\frac{40}{100}$ and $P\left(\frac{\bar{E}}{A_{3}}\right)=\frac{65}{100}$
i. (c)

$$
\begin{aligned}
& \therefore P(E)=P\left(A_{1}\right) \cdot P\left(\frac{E}{A_{1}}\right)+P\left(A_{2}\right) \cdot P\left(\frac{E}{A_{2}}\right)+P\left(A_{3}\right) \cdot P\left(\frac{E}{A_{3}}\right) \\
& =\frac{4}{10} \cdot \frac{45}{100}+\frac{4}{10} \cdot \frac{60}{100}+\frac{2}{10} \cdot \frac{35}{100} \\
& =\frac{180}{1000}+\frac{240}{1000}+\frac{70}{1000}=\frac{490}{1000}=0.49
\end{aligned}
$$

ii. (b)

$$
P\left(\frac{\bar{E}}{A_{3}}\right)=1-P\left(\frac{E}{A_{3}}\right)=1-\frac{35}{100}=\frac{65}{100} \text { [as given above] }
$$

iii. (d)

$$
\begin{aligned}
& P\left(\frac{A_{2}}{\bar{E}}\right)=\frac{P\left(A_{2}\right) \cdot P\left(\frac{\bar{E}}{A_{2}}\right)}{P\left(A_{1}\right) \cdot P\left(\frac{\bar{E}}{A_{1}}\right)+P\left(A_{2}\right)+P\left(\frac{\bar{E}}{A_{2}}\right)+P\left(A_{3}\right) \cdot P\left(\frac{\bar{E}}{A_{3}}\right)} \\
& =\frac{\frac{4}{10} \cdot \frac{40}{100}}{\frac{4}{10} \cdot \frac{55}{100}+\frac{4}{10} \cdot \frac{40}{100}+\frac{2}{10} \cdot \frac{65}{100}}=\frac{\frac{100}{1000}}{\frac{\frac{220}{1000}+\frac{160}{1000}+\frac{130}{1000}}{1000}}=\frac{16}{51} \\
& =\frac{510}{1000}
\end{aligned}
$$

iv. (b)

$$
\begin{aligned}
& P\left(\frac{A_{2}}{\bar{E}}\right)=\frac{P\left(A_{1}\right) \cdot P\left(\frac{\bar{E}}{A_{1}}\right)}{P\left(A_{1}\right) \cdot P\left(\frac{\bar{E}}{A_{1}}\right)+P\left(A_{2}\right)+P\left(\frac{\bar{E}}{A_{2}}\right)+P\left(A_{3}\right) \cdot P\left(\frac{\bar{E}}{A_{3}}\right)} \\
& =\frac{\frac{4}{10} \cdot \frac{55}{100}}{\frac{4}{10} \cdot \frac{55}{100}+\frac{4}{10} \cdot \frac{40}{100}+\frac{2}{10} \cdot \frac{65}{100}}=\frac{\frac{220}{1000}}{\frac{220}{1000}+\frac{160}{1000}+\frac{130}{1000}} \\
& =\frac{\frac{220}{1000}}{\frac{510}{1000}}=\frac{22}{51}
\end{aligned}
$$

v. (a)

$$
P\left(\frac{\bar{E}}{A_{1}}\right)=1-P\left(\frac{E}{A_{1}}\right)=1-\frac{45}{100}=\frac{55}{100}
$$

Section C

19. The equation of the plane with intercepts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ on X -axis, Y -axis and z -axis respectively is, $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Here, $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=4$.
Therefore, required equation is,
$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
$\Rightarrow 6 x+4 y+3 z=12$
20. Equation of plane through three points $(2,2,1),(3,0,1)$ and $(4,-1,0)$ is
$[(\vec{r}-(2 \hat{i}+2 \hat{j}+\hat{k})] \cdot[(\hat{i}-2 \hat{j}) \times(\hat{i}-\hat{j}-\hat{k})]=0$
i.e. $\vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})=7$ or $2 \mathrm{x}+\mathrm{y}+\mathrm{z}-7=0 \ldots$ (i)

Equation of line through $(3,-4,-5)$ and $(2,-3,1)$ is
$\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}$
Any point on line (ii) is $(-\lambda+3, \lambda-4,6 \lambda-5)$.
This point lies on plane (i).
Therefore, $2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=0$,
i.e., $\lambda=2$

Hence the required point is $(1,-2,7)$.
21. We have,
$r \cdot(i+j+\hat{k})+17=0$
$\Rightarrow(x \hat{i}+y \hat{j}+z \hat{k})(i+\hat{j}+\hat{k})+17=0$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}+17=0 \because P=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$
$\Rightarrow P=\left|\frac{1(1)+1(2)+1(5)+17}{\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}}\right| \Rightarrow P=\left|\frac{1+2+5+17}{\sqrt{3}}\right| \Rightarrow P=\frac{25}{\sqrt{3}}$ units.
OR
The equation of any plane passing through $(2,2,1)$ is
$a(x-2)+b(y-2)+c(z-1)=0 \ldots .(1)$
It is also given that (1) is passing through $(9,3,6)$. Therefore,
$a(9-2)+b(3-2)+c(6-1)=0 \ldots$.. 2)
It is also given that (1) is perpendicular to the plane $2 x+6 y+6 z=1$. So,
$2 a+6 b+6 c=0$
$\Rightarrow a+3 b+3 c=0$
Solving (1), (2) and (3), we obtain
$\left|\begin{array}{ccc}x-2 & y-2 & z-1 \\ 7 & 1 & 5 \\ 1 & 3 & 3\end{array}\right|=0$
$\Rightarrow-12(x-2)-16(y-2)+20(z-1)=0$
$\Rightarrow 3(\mathrm{x}-2)+4(\mathrm{y}-2)-5(\mathrm{z}-1)=0$
$\Rightarrow 3 \mathrm{x}+4 \mathrm{y}-5 \mathrm{z}=9$
Hence the required equation of plane.
22. Let firm produces x units of product A units product A and Y units product B

Then total profit $=$ Rs. $(2 x+2 y)$
Total time available for M_{1} to produce both $\mathrm{E}=\mathrm{x}+\mathrm{y} \leq 400$
Total time available for M_{2} to produce both A and $\mathrm{B}=2 \mathrm{x}+\mathrm{y} \leq 600$
Therefore, mathematically, L.P.P can be given as:
Maximize $z=2 x+2 y$ subject to constraints
$x+y \leq 400$ [first constraint]
$2 x+y \leq 600$ [second Constraint]
$x \geq 0, y \geq 0$ non-negativity constraints
23. Here, it is given that $x-y<3$

Taking line $x-y=3$
taking line $3 x-2 y=12$ and substituting $x=0 y=-3$
Putting $y=0, x=3$
Now, we draw the graph of line $x-y=3$
putting, $(0,0)$ in $x-y<3$ we get $0-0<3$, which is true.
Therefore, shaded region towards origin including line $x-y=3$

24. Here it is given that, $x+2 y>1$

Taking line $x+2 y=1$
Taking line $x+2 y=1$ and
Substituting $\mathrm{x}=0, y=\frac{1}{2}$
Putting $y=0, x=1$
Now we draw the graph of line $x+2 y=1$
Put, $(0,0)$ in $x+2 y>1$ we get $0>1$ which is false
shaded region above the line $x+2 y=1$

25. Let A denote the event that first engine is available when needed and B, the event that second engine is available when needed. Then, $P(A)=P(B)=0.95$.
Required probability $=P(A)+P(B)-2 P(A \cap B)$
$=P(A)+P(B)-2 P(A) \times P(B)[$ as A and B are independent]
$=0.95+0.95-2 \times 0.95 \times 0.95=0.095$
26. The sample space of the given experiment will be:
$S=\{H H H$, HHT, HTH, THH, HTT, THT, TTH, TTT $\}$
Here, E: at most two tails
And F: at least one tail
$\Rightarrow \mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$
And F $=\{$ HHT, HTH, THH, HTT, THT, TTH, TTT $\}$
$P(E \cap F)=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$
So, $\mathrm{P}(\mathrm{E})=\frac{7}{8}, \mathrm{P}(\mathrm{F})=\frac{7}{8}, P(E \cap F)=\frac{6}{8}=\frac{3}{4}$

Bydefinition of conditional probability, $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}$
$\Rightarrow P(E \mid F)=\frac{\frac{3}{4}}{\frac{7}{8}}=\frac{6}{7}$
27. Given;
$A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
So, $n(A)=6, n(S)=(6)^{2}=36$
$\therefore P(A)=\frac{n(A)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
And $B=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
$\Rightarrow \mathrm{n}(\mathrm{B})=6$
$\therefore P(B)=\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
$\mathrm{A} \cap \mathrm{B}=[(5,5),(6,6)]$
$\therefore P(A \cap B)=\frac{2}{36}=\frac{1}{18}$
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$
Thus,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) . \mathrm{P}(\mathrm{B})$
So, A and B are not independent events.
28. A is an event of getting 5 on the first throw and 6 on the second throw.
$A=\{(5,6,1),(5,6,2),(5,6,3),(5,6,4),(5,6,5),(5,6,6)\}$
Also, B is an event of getting 3 or 4 on the third throw.
$\therefore \mathrm{A} \cap \mathrm{B}=\{(5,6,3),(5,6,4)\}$
Required probability, $P(A \mid B)=\frac{n(A \cap B)}{n(A)}=\frac{2}{6}=\frac{1}{3}$ OR
Let X be a random variable denoting the number of success in 8 throws.
Here, $n=8$
$\mathrm{p}=$ probability of getting 5 or 6
$=\frac{2}{6}=\frac{1}{3}$ and $q=\frac{2}{3}$
Mean $(n p)=\frac{8}{3}$
Variance $(n p q)=\frac{16}{9}$
Standard deviation $=\sqrt{\text { Variance }}=\frac{4}{3}$
So, mean $=2.66$ and standard deviation $=1.33$

Section D

29. Equation of any plane through the intersection of given planes can be taken as
$(3 x-y+2 z-4)+\lambda(x+y+z-2)=0$
Since the point $(2,2,1)$ lies in this plane,therefore,we get,
(3(2) $-2+2(1)-4)+\lambda[2+2+1-2]=0$
$\Rightarrow 2+\lambda(3)=0$
$\Rightarrow \lambda=-\frac{2}{3}$. Put value of λ in eq (i), we get,
$(3 x-y+2 z-4)-\frac{2}{3}(x+y+z-2)=0$
$7 \mathrm{x}-5 \mathrm{y}+4 \mathrm{z}-9=0$
30. We know that,
equation of the plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ having Direction ratios a, b,c is; a
$\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
Equation of plane passing through the point $\mathrm{A}(1,2,1)$ is given as
$a(x-1)+b(y-2)+c(z-1)=0$
Now, DR's of line PQ where $P(1,4,2)$ and $Q(2,3,5)$ are $(2-1,3-4,5-2)=(1,-1,3)$.
Plane (i) is perpendicular to line PQ .
\therefore Direction ratios of plane (i) are $(1,-1,3)[\because$ Direction ratios normal to the plane are proportional]
i.e. $a=1, b=-1, c=3$

On putting values of a, b and c in Eq. (i), we get the required equation of plane as
$1(x-1)-1(y-2)+3(z-1)=0$
$x-1-y+2+3 z-3=0$
$x-y+3 z-2=0$
Now, the given equation of line is
$\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-7}{-1}$
Direction ratios of this line are $(2,-1,-1)$ and passing through the point $(-3,5,7)$.
Direction ratios of normal to the plane (ii) are $(1,-1,3)$.
To check whether the line is perpendicular to the plane, we use the condition $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$ $2(1)-1(-1)-1(3)=2+1-3=0$
So, line (iii) is perpendicular to plane (i).
Therefore, distance of the point $(-3,5,7)$ from the plane (ii)
$\Rightarrow d=\left|\frac{(-3)(1)+(5)(-1)+7(3)-2}{\sqrt{(1)^{2}+(-1)^{2}+(3)^{2}}}\right|$
$=\left|\frac{-3-5+21-2}{\sqrt{1+1+9}}\right|$
$=\left|\frac{11}{\sqrt{11}}\right|=\left|\frac{(\sqrt{11})^{2}}{\sqrt{11}}\right|$
$=\sqrt{11}$ units
31. Let D be the foot of the perpendicular drawn from A on BC , and let D divide BC in the ratio $\lambda: 1$. Then, coordinates of D are
$\left(\frac{5 \lambda+1}{\lambda+1}, \frac{4 \lambda+4}{\lambda+1}, \frac{4 \lambda+6}{\lambda+1}\right)$
Now, $\overrightarrow{A D}=$ Position vector of D - Position vector of A
$\Rightarrow \overrightarrow{A D}=\left(\frac{5 \lambda+1}{\lambda+1}-1\right) \hat{i}+\left(\frac{4 \lambda+4}{\lambda+1}-2\right) \hat{j}+\left(\frac{4 \lambda+6}{\lambda+1}-1\right) \hat{k}$
$\Rightarrow \overrightarrow{A D}=\left(\frac{4 \lambda}{\lambda+1}\right) \hat{i}+\left(\frac{2 \lambda+2}{\lambda+1}\right) \hat{j}+\left(\frac{3 \lambda+5}{\lambda+1}\right) \hat{k}$
also $\overrightarrow{B C}=$ Position vector of $C-$ Position vector of B
$\Rightarrow \overrightarrow{B C}=(5 \hat{i}+4 \hat{j}+4 \hat{k})-(\hat{i}+4 \hat{j}+6 \hat{k})=4 \hat{i}+0 \hat{j}-2 \hat{k}$.
It is given that AD is perpendicular to BC .
$\therefore \overrightarrow{A D} \perp \overrightarrow{B C}$
$\Rightarrow \overrightarrow{A D} \cdot \overrightarrow{B C}=0$
$\Rightarrow\left\{\left(\frac{4 \lambda}{\lambda+1}\right) \hat{i}+\left(\frac{2 \lambda+2}{\lambda+1}\right) \hat{j}+\left(\frac{3 \lambda+5}{\lambda+1}\right) \hat{k}\right\} \cdot(4 \hat{i}+0 \hat{j}-2 \hat{k})=0$
$\Rightarrow 4\left(\frac{4 \lambda}{\lambda+1}\right)+0\left(\frac{2 \lambda+2}{\lambda+1}\right)-2\left(\frac{3 \lambda+5}{\lambda+1}\right)=0$
$\Rightarrow \frac{16 \lambda}{\lambda+1}+0-2 \frac{(3 \lambda+5)}{\lambda+1}=0$

$\Rightarrow 16 \lambda-6 \lambda-10=0$
$\Rightarrow \lambda=1$
Substituting $\lambda=1$ in (i) we obtain,
Coordinates of D are (3, 4, 5).

Given lines can be written as
$\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$
Now, on comparing both lines with
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{b}$, we get ,
$x_{1}=5, \mathrm{y}_{1}=7, \mathrm{z}_{1}=-3, \mathrm{a}_{1}=4, \mathrm{~b}_{1}=4, \mathrm{c}_{1}=-5$ and $\mathrm{x}_{2}=8, \mathrm{y}_{2}=4, \mathrm{z}_{2}=5, \mathrm{a}_{2}=7, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=3$
We know that if given lines are coplanar, then
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
LHS $\xlongequal{ }\left|\begin{array}{ccc}8-5 & 4-7 & 5+3 \\ 4 & 4 & -5 \\ 7 & 1 & 3\end{array}\right|=\left|\begin{array}{ccc}3 & -3 & 8 \\ 4 & 4 & -5 \\ 7 & 1 & 3\end{array}\right|$
$=3(12+5)+3(12+35)+8(4+28)$
$=3 \times 17+3 \times 47+8(-24)$
$=21+141-192=192-192=0=$ RHS
Therefore, given lines are coplanar.
32. If h and t represents heads and tails respectively, then when a coin is tossed three times, the sample space becomes
S = \{(HHH, HHT, HTH, HTT, THH, THT, TTH, TTT) $\}, n(S)=8$
Let E be the event of head occurring on the third toss, then the number of cases favorable to the event, $\mathrm{E}=\{(\mathrm{HHH}, \mathrm{HTH}, \mathrm{THH}, \mathrm{TTH})\}, \mathrm{n}(\mathrm{E})=4$
Therefore,we have,
$P(E)=\frac{n(E)}{n(S)}=\frac{4}{8}=\frac{1}{2}$
Let F be the event that head occurs on first two toss, then the favorable outcomes will be
F = \{(HHH,HHT) $\}, \mathrm{n}(\mathrm{F})=2$
So the corresponding probability will be
$P(F)=\frac{n(F)}{n(S)}=\frac{2}{8}=\frac{1}{4}$
And the favorable outcome for getting head on all the three toss will be
$(\mathrm{E} \cap \mathrm{F})=\{(\mathrm{HHH})\}, \mathrm{n}(\mathrm{E} \cap \mathrm{F})=1$
And the corresponding probability becomes
$P(E \cap F)=\frac{n(E \cap F)}{n(F)}=\frac{1}{8}$
So if head occurs on first two tosses, the probability of getting head on third tosses
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{8}}{\frac{1}{4}}=\frac{1}{2}$
33. Let $\mathrm{E}_{1}, \mathrm{E}_{2}$ and A be the events defined as follows:
$E_{1}=$ Selecting a bag from the first group, $E_{2}=$ Selecting a bag from the second group and, $A=$ Ball drawn is white
Since there are 5 bags out of which 3 bags belong to first group and 2 bags to second group.Therefore,we have,

$$
P\left(E_{1}\right)=\frac{3}{5}, P\left(E_{2}\right)=\frac{2}{5}
$$

If E_{1} has already occurred, then a bag from the first group is chosen. The bag chosen contains 5 white balls and 3 black balls. Therefore, the probability of drawing a white ball from it is 5/8.
$\therefore \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=5 / 8$
Similarly, $P\left(A / E_{2}\right)=2 / 6=1 / 3$.
We have to find $P\left(E_{1} / M\right)$, i.e. given that the ball drawn is white, what is the probability that it is drawn from a bag of the first group.
By Baye's theorem, required probability is given by,
$P\left(E_{1} / A\right)=\frac{P\left(E_{1}\right) P\left(A / E_{1}\right)}{P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)}=\frac{\frac{3}{5} \times \frac{5}{8}}{\frac{3}{5} \times \frac{5}{8}+\frac{2}{5} \times \frac{1}{3}}=\frac{45}{61}$
34. A white ball and a red ball can be drawn in three mutually exclusive ways:
(I) Selecting bag I and then drawing a white and a red ball from it
(II) Selecting bag II and then drawing a white and a red ball from it
(II) Selecting bag III and then drawing a white and a red ball from it

Consider the following events:
$\mathrm{E}_{1}=$ Selecting bag I
$\mathrm{E}_{2}=$ Selecting bag II
$\mathrm{E}_{3}=$ Selecting bag II
A = Drawing a white and a red ball
It is given that one of the bags is selected randomly.
$\therefore P\left(E_{1}\right)=\frac{1}{3}$
$P\left(E_{2}\right)=\frac{1}{3}$
$P\left(E_{3}\right)=\frac{1}{3}$
Now,
$P\left(A / E_{1}\right)=\frac{{ }^{1} C_{1} \times{ }^{3} C_{1}}{{ }^{6} C_{2}}=\frac{3}{15}$
$P\left(A / E_{2}\right)=\frac{{ }^{2} C_{1} \times{ }^{1} C_{1}}{{ }^{4} C_{2}}=\frac{2}{6}$
$P\left(A / E_{3}\right)=\frac{{ }^{4} C_{1} \times{ }^{3} C_{1}}{{ }^{12} C_{2}}=\frac{12}{66}$
Using the law of total probability, we get
Required probability $=\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{3}\right)$
$=\frac{1}{3} \times \frac{3}{15}+\frac{1}{3} \times \frac{2}{6}+\frac{1}{3} \times \frac{12}{66}$
$=\frac{1}{15}+\frac{1}{9}+\frac{2}{33}$
$=\frac{33+55+30}{495}=\frac{118}{495}$
OR
As it is clear from the given graph, the coordinates of the corner points O, A, E and Dare given as $(0,0),(52,0)$, $(144,16)$ and $(0,38)$, respectively. Also given region is bounded.
Given that the objective function, $Z=3 x+4 y$ to be maximised.
\because Also converting the given inequalities into their equations to find their points of intersection,
$2 x+y=104$ \qquad (i) and
$2 x+4 y=152$ (ii)
solving above equations (i) and (ii), we get
$\Rightarrow-3 y=-48$
$\Rightarrow \mathrm{y}=16$ and $\mathrm{x}=44$.
Hence the point of intersection of the lines (i) and (ii) is $(16,44)$
The table below gives the values of the objective function Z , at the corner points of the feasible region.

Corner Points	Corresponding value of Z
$(0,0)$	$\mathrm{Z}=0$
$(52,0)$	$\mathrm{Z}=156$
$(44,16)$	$\mathrm{Z}=196$ (maximum)
$(0,38)$	$\mathrm{Z}=152$

Hence, Z attains its maximum at the point $(44,16)$ and its maximum value is 196.
35. According to the question,

Maximize $Z=x+2 y$
Subject to the constraints
$x-y \geq 0$
$2 y \leq x+2$
such that $x \geq 0, y \geq 0$
We draw line $x-y=0$ and $2 y=x+2$ and shaded the feasible region with respect to constraints sign.
We observe that the feasible region is unbounded and corner points are $O(0,0), A(2,2)$ only. Evaluating Z at
all corner points,

Corner Points	$\mathbf{Z}=\mathbf{x}+2 \mathbf{y}$
$(0,0)$	$Z=0$ (Smallest)
$(2,2)$	$Z=6$ (largest)

We are to determine the maximum value. As the feasible region is unbounded we can not say whether the largest value $Z=6$ is maximum or not.
We draw the half plane $x+2 y>6$ and notice that it has common points with feasible region. There does not exist any maximum value. For testing we let $x=4, y=2$, this point lie in the feasible region and at $(4,2)$ the value of $Z=8$ i.e., greater than ' 6 '.

Section E

36. Given equations of planes are
$2 \mathrm{x}+\mathrm{y}-\mathrm{z}-3=0 \ldots$...(i)
and $5 \mathrm{x}-3 \mathrm{y}+4 \mathrm{z}+9=0$
Let the required equation of plane which passes through the line of intersection of planes (i) and (ii) be
$(2 x+y-z-3)+\lambda(5 x-3 y+4 z+9)=0 \ldots$ (iii)
$\Rightarrow x(2+5 \lambda)+y(1-3 \lambda)+z(-1+4 \lambda)+(-3+9 \lambda)=0$
Here, Direction Ratio's of the plane are
$(2+5 \lambda, 1-3 \lambda,-1+4 \lambda)$
Also, given that the plane (iv) is parallel to the line, whose equation is
$\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$
Direction ratio's of the line are $(2,4,5)$.
Since the plane is parallel to the line.
Hence, normal to the plane is perpendicular to the line,
i.e. $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$

Here, $a_{1}=2+5 \lambda, b_{1}=1-3 \lambda, c_{1}=-1+4 \lambda$
and $\mathrm{a}_{2}=2, \mathrm{~b}_{2}=4, \mathrm{c}_{2}=5$
$\therefore \quad(2+5 \lambda) 2+(1-3 \lambda) 4+(-1+4 \lambda) 5=0$
$\Rightarrow \quad 4+10 \lambda+4-12 \lambda-5+20 \lambda=0$
$\Rightarrow 18 \lambda+3=0 \Rightarrow \lambda=-\frac{3}{18}=-\frac{1}{6}$
On putting $\lambda=-\frac{1}{6}$ in Eq. (iii), we get the required equation of plane as
$(2 x+y-z-3)-\frac{1}{6}(5 x-3 y+4 z+9)=0$
$12+6 y-6 z-18-5 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}-9=0$
$7 x+9 y-10 z-27=0$
OR
The equation of the plane in the intercept form is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
Distance of this plane from the origin is given to be p .
$\therefore p=\frac{\left|\frac{1}{a} \times 0+\frac{1}{b} \times 0+\frac{1}{c} \times 0-1\right|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$
$\Rightarrow p=\frac{1}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{p}=\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}} \\
& \Rightarrow \frac{1}{p^{2}}=\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2} \\
& \Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
\end{aligned}
$$

37.

Let x toys of type A and y toys of type B
$Z=\frac{15}{2} x+5 y$
$12 x+6 y \leqslant 360$
$\Rightarrow 2 x+y \leqslant 60$
$18 x \leqslant 360$
$\Rightarrow x \leqslant 20$
$6 x+9 y \leqslant 360$
$\Rightarrow 2 x+3 y \leqslant 120$
$x \geqslant 0, y \geqslant 0$
Solving these equations, we get,
$\mathrm{x}=15, \mathrm{y}=30$
maximum profit=Rs $\left[\frac{15}{2}(15)+5(30)\right]=$ Rs 262.5 .
OR

Let the farmer use xg of F_{1} and y Kg of F_{2}.
$Z=6 x+5 y$
$\frac{10 x}{100}+\frac{5 y}{100} \geqslant 14$
$\frac{6 x}{100}+\frac{10 y}{100} \geqslant 14$
$x \geqslant 0, y \geqslant 0$
On solving these equations we get $\mathrm{x}=100$ and $\mathrm{y}=80$
Minimum cost
$z=6 \times 100+5 \times 80=600+400=1000$
Thus, minimum cost $=$ Rs 1000.
Hence, 100 kg of fertilizer F_{1} and 80 kg of fertilizer F_{2} should be used so that nutrient requirements are met at minimum cost of Rs 1000.
38. Let $\mathrm{E}_{1}=$ Event that 1 occurs is a die
$E_{2}=$ Event that 1 does not occur in a die
$\mathrm{A}=$ Event that the man reports that 1 occur in a die
Then $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{6}$ and $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{5}{6}$
$\therefore \mathrm{P}$ (man reports that 1 occurs when 1 occur)
$=P\left(\frac{A}{E_{1}}\right)=\frac{3}{5}$
Thus, by Baye's theorem, we get
P(get actually 1 when he reports that 1 occur)
$P\left(\frac{E_{1}}{A}\right)=\frac{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)}$
$=\frac{\frac{1}{6} \times \frac{3}{5}}{\frac{1}{6} \times \frac{3}{5}+\frac{5}{6} \times \frac{2}{5}}=\frac{3}{13}$
OR
Let E denote the event that the person selected is actually having HIV and A the event that the person's HIV test is diagnosed as + ve.
Let E' denote the event that person selected is actually not having HIV.
Clearly, $\left\{E, E^{\prime}\right\}$ is a partition of the sample space of all people in the population.
We are given that
$P(E)=0.1 \%=\frac{0.1}{100}=0.001$
$P\left(E^{\prime}\right)=1-P(E)=0.999$
$P(A / E)=90 \%=\frac{90}{100}=0.9$
$P\left(A / E^{\prime}\right)=1 \%=\frac{1}{100}=0.01$
By Bayes theorm,we have,
$P(E / A)=\frac{P(E) P(A / E)}{P(E) P(A / E)+P\left(E^{\prime}\right) P\left(A / E^{\prime}\right)}$
$=\frac{0.001 \times 0.9}{0.001 \times 0.9+0.999 \times 0.01}$
$=\frac{9}{9+99.9}$
$=\frac{90}{1089}$
$=0.083$

