Solution

Class 10 - Mathematics

2020-2021 - Paper-7

Part-A

1. We know that HCF of two numbers is a divisor of their LCM. Here, 18 is not a divisor of 380.

But $380=18 \times 21+2$
Here 2 is remainder so 380 is not divisible by 18.
So, 18 and 380 cannot be respectively HCF and LCM of two numbers.
OR
Since the decimal expansion is non-terminating but recurring, the given number is a rational number of the form $\frac{p}{q}$ and q is not of the form $2^{\mathrm{m}} \times 5^{\mathrm{n}}$ that is, the prime factors of q will also have a factor other than 2 and 5.
2. Given, $2 x^{2}-2 \sqrt{2} x+1=0$

Here, $\mathrm{a}=2, \mathrm{~b}=-2 \sqrt{2}, \mathrm{c}=1$.
So, $\mathrm{b}^{2}-4 \mathrm{ac}=8-8=0$
Therefore, $\mathrm{x}=\frac{2 \sqrt{2} \pm \sqrt{0}}{4}=\frac{\sqrt{2}}{2} \pm 0$ i.e., $x=\frac{1}{\sqrt{2}}$
So, the roots are $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
3. The given pair of linear equations
$x-2 y-8=0$
and $5 \mathrm{x}-10 \mathrm{y}-\mathrm{c}=0$
On Comparing with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$;
Here, $a_{1}=1, b_{1}=-2, c_{1}=-8$;
And $\mathrm{a}_{2}=5, \mathrm{~b}_{2}=-10, \mathrm{c}_{2}=-\mathrm{c}$;
$a_{1} / a_{2}=1 / 5$
$\mathrm{b}_{1} / \mathrm{b}_{2}=1 / 5$
$c_{1} / c_{2}=8 / c$
But if $c=40$ (real value), then the ratio c_{1} / c_{2} becomes $1 / 5$ and then the system of linear equations has an infinitely many solutions.
Hence, at $\mathrm{c}=40$, the system of linear equations does not have a unique solution.
4. $\because \mathrm{BD}$ is a diameter
$\therefore \angle \mathrm{BCD}=90^{\circ}$ [Angle in the semi-circle]
$\therefore \angle \mathrm{BCP}=180^{\circ}-90^{\circ}-40^{\circ}=50^{\circ}$
5. Here,
$a_{n}=n^{2}+1$
So, $a_{1}=1^{2}+1=2$
$\mathrm{a}_{2}=2^{2}+1=5$
$a_{3}=3^{2}+1=10$
List of numbers becomes 2, 5, 10,.......
Here, $5-2 \neq 10-5$, so it does not form an A.P.
OR
$0.6,1.7,2.8,3.9 .$.
First term = a= 0.6
Common difference (d) = Second term -First term
= Third term - Second term and so on
Therefore, Common difference (d) = 1.7-0.6=1.1
6. $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots \ldots$

First term (a) $=\frac{1}{3}$
Common difference (d) $=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}$
7. Given $(x+4)^{2}-8 x=0$
$\Rightarrow \mathrm{x}^{2}+8 \mathrm{x}+16-8 \mathrm{x}=0$
$\therefore \mathrm{x}^{2}+16=0$
$\therefore \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(0)-4(1)(16)<0$
Hence, the equation $(x+4)^{2}-8 x=0$ has no real roots.
OR
We have given that $\mathrm{x}^{2}+4 \mathrm{x}+5=0$. Here, $\mathrm{a}=1, \mathrm{~b}=4, \mathrm{c}=5$. So, $\mathrm{b}^{2}-4 \mathrm{ac}=16-20=-4<0$.
Since the square of a real number cannot be negative, therefore $\sqrt{b^{2}-4 a c}$ will not have any real value. So, there are no real roots for the given equation.
8.

Consider C is an external point as shown in figure.
According to theorem, from an external point only two tangents can be drawn to a circle.
So, value of $k=2$
9. PA and PB are two tangents drawn from an external point P to a circle.

$\mathrm{CA} \perp \mathrm{AP}$
$\mathrm{CB} \perp \mathrm{BP}$
$\mathrm{PA} \perp \mathrm{PB}$
\therefore BPAC is a square.
$\Rightarrow A P=P B=B C=4 \mathrm{~cm}$

Given, A line touches a circle of radius 4 cm .
Distance between two parallel tangents = Diameter of the circle $=2 \times 4=8 \mathrm{~cm}$.
10. $\triangle A H K \sim \triangle A B C$
$\Rightarrow \frac{A K}{A C}=\frac{H K}{B C}$
$\Rightarrow \frac{10}{x}=\frac{7}{3.5}$, when $\mathrm{AC}=\mathrm{x} \mathrm{cm}$
$\Rightarrow \quad x=\frac{10 \times 3.5}{7}=5$
$\therefore \mathrm{AC}=5 \mathrm{~cm}$.
11. We have $a_{1}=-1, a_{2}=-1, a_{3}=-1$ and $a_{4}=-1$
$a_{2}-a_{1}=0$
$\mathrm{a}_{3}-\mathrm{a}_{2}=0$
$a_{4}-a_{3}=0$
Clearly, the difference of successive terms is same, therefore given list of numbers form an AP.
12. We have $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
by using $\tan \left(90^{\circ}-\mathrm{A}\right)=\cot \mathrm{A}$, we get
$=\frac{\tan \left(90^{\circ}-64^{\circ}\right)}{\cot 64^{\circ}}$
$=\frac{\cot 64^{\circ}}{\cot 64^{\circ}}$
$=1$
13. $\tan A=\frac{3}{4}$ and $A+B=90^{\circ} \Rightarrow B=90^{\circ}-A$
$\therefore \cot B=\cot \left(90^{\circ}-A\right)=\tan A$
$=\frac{3}{4}$
14. Edge of the cube $=4.2 \mathrm{~cm}$

Diameter of base of cone $=4.2 \mathrm{~cm}$
Radius $=\frac{4.2}{2}=2.1 \mathrm{~cm}$
15. Given AP: 75, 67, 59, 51,...

Common difference $=67-75=-8$
5th term $=51-8=43$
6 th term $=43-8=35$
16. After removing king, queen and jack of clubs from a deck of 52 playing cards there are 49 cards left in the deck. Out of these 49 cards one card can be chosen in 49 ways.
\therefore Total number of elementary events $=49$
There are 13 heart cards in the deck containing 49 cards out of which one heart card can be chose in 13 ways.
\therefore Favourable number of elementary events $=13$
Hence, P (Getting a heart $)=\frac{13}{49}$
OR
No, the outcomes are not equally likely, because 3 contains half part of the total region, so it is more likely than 1 and 2 , since 1 and 2 , each contains half part of the remaining part of the region.
17. i. (d) The perpendiculars from P, Q, R and S intersect the x-axis at $3,10,10$ and 3 respectively.

Also, the perpendiculars from P, Q, R and S intersect the y-axis at $6,6,2,2$ respectively.
Hence coordinates of P and S are: $P(3,6)$ and $S(3,2)$.
ii. (b) Let M be the mid-point of QS.

So using mid-point formula, Coordinates of M are $\left(\frac{3+10}{2}, \frac{2+6}{2}\right)=\left(\frac{13}{2}, 4\right)$
iii. (a) Now, $\mathrm{PQ}=\sqrt{(10-3)^{2}+(6-6)^{2}}=\sqrt{49}=7 \mathrm{~m}$ $\mathrm{PS}=\sqrt{(3-3)^{2}+(2-6)^{2}}=\sqrt{16}=4 \mathrm{~m}$
Hence, area of rectangle $\mathrm{PQRS}=\mathrm{PQ} \times \mathrm{PS}=7 \times 4=28 \mathrm{~m}^{2}$
iv. (c) $R(10,2), Q(10,6)$
v. (b) 7,4
18. i. (c) 90°
ii. (b) SAS
iii. (b) 4:9
iv. (d) Converse of Pythagoras theorem
v. (a) $48 \mathrm{~cm}^{2}$
19. i. (a) $46-48$
ii. (b) 46.9 kg
iii. (a) Mean
iv. (c) 45.85
v. (b) 14 K
20. i. (a) $196.25 \mathrm{~cm}^{3}$
ii. (b) $32.71 \mathrm{~cm}^{3}$
iii. (c) $163.54 \mathrm{~cm}^{3}$
iv. (b) $9.81 \mathrm{~cm}^{3}$
v. (d) $186.44 \mathrm{~cm}^{3}$

Part-B

21. Let us assume, to the contrary, that $3 \sqrt{2}$ is rational.

That is, we can find coprimes a and $\mathrm{b}(\mathrm{b} \neq 0)$ such that $3 \sqrt{2}=\frac{a}{b}$
Rearranging, we get $\sqrt{2}=\frac{a}{3 b} \ldots$ (i)
Since 3 , a and b are integers, $\frac{a}{3 b}$ is rational, and so (i) shows that $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
So, we conclude that $3 \sqrt{2}$ is irrational.
22. Since (a, b) is the mid-point of the line segment $A(10,-6)$ and $B(k, 4)$,
$a=\frac{10+k}{2}$ and $\mathrm{b}=\frac{-6+4}{2}$
$\Rightarrow 2 \mathrm{a}=10+\mathrm{k}$ and $b=\frac{-2}{2}$
$\Rightarrow \mathrm{k}=2 \mathrm{a}-10$ and $\mathrm{b}=-1$
Now, $\mathrm{a}-2 \mathrm{~b}=18$
$\Rightarrow \mathrm{a}-2(-1)=18$
$\Rightarrow \mathrm{a}+2=18$
$\Rightarrow \mathrm{a}=16$
Hence,
$\mathrm{k}=2 \times 16-10=32-10=22$
$\therefore A B=\sqrt{(22-10)^{2}+(4+6)^{2}}=\sqrt{12^{2}+10^{2}}=\sqrt{144+100}=\sqrt{244}=2 \sqrt{61}$ units OR
It is given that $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from $\mathrm{A}(3,6)$ and $\mathrm{B}(-3,4)$.
Using Distance formula, we can write
$\mathrm{PA}=\mathrm{PB}$
$\sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{[x-(-3)]^{2}+(y-4)^{2}}$
$\Rightarrow \sqrt{x^{2}+9-6 x+y^{2}+36-12 y}=\sqrt{x^{2}+9+6 x+y^{2}+16-8 y}$
Squaring both sides, we get
$\Rightarrow x^{2}+9-6 x+y^{2}+36-12 y=x^{2}+9+6 x+y^{2}+16-8 y$
$\Rightarrow-6 x-12 y+45=6 x-8 y+25$
$\Rightarrow 12 \mathrm{x}+4 \mathrm{y}=20$
$\Rightarrow 3 \mathrm{x}+\mathrm{y}=5$
23. The quadratic equation is given as: $4 u^{2}+8 u$
it can be written in the standard form as:
$=4 u^{2}+8 u+0$
$=4 u(u+2)$
The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$,
i.e., $u=0$ or $u=-2$

Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2
Sum of zeroes $=0+(-2)=-2=\frac{-(8)}{4}=\frac{-(\text { coefficient of } u)}{\text { coefficient of } u^{2}}$
Product of zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { constant torm }}{\text { coefficient of } u^{2}}$
Hence verified
24.

Steps of construction:

(i) Draw a line segment PQ of 14 cm .
(ii) Take the midpoint O of PQ .
(iii) Draw the perpendicular bisectors of PO and OQ which intersects at points R and S .
(iv) With center R and radius RP draw a circle.
(v) With center S and radius, $S Q$ draw a circle.
(vi) With center O and radius 3 cm draw another circle which intersects the previous circles at the points A , B, C, and D.
(vii) Join PA, PB, QC, and QD.

So, $\mathrm{PA}, \mathrm{PB}, \mathrm{QC}$, and QD are the required tangents.
25. $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{1}{2}$
$=\frac{3}{4}+\frac{1}{4}=1$
OR

LHS

$=\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{2} \theta-\cos \theta}=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$
$=\frac{\sin \theta\left(\cos ^{2} \theta+\sin ^{2} \theta-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-\cos ^{2} \theta-\sin ^{2} \theta\right)} \quad \because \cos ^{2} \theta+\sin ^{2} \theta=1$
$=\frac{\sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}=\tan \theta$
= RHS
26.

In larger circle $\mathrm{C} 1, \mathrm{AB}$ is the chord and OP is the tangent.
Therefore, $\angle O P B=90^{\circ}$
Hence, $\mathrm{AP}=\mathrm{PB}$ (perpendicular from center of the circle to the chord bisects the chord)
27. We can prove $7 \sqrt{5}$ irrational by contradiction.

Let us suppose that $7 \sqrt{5}$ is rational.
It means we have some co-prime integers a and $b(b \neq 0)$
such that
$7 \sqrt{5}=\frac{a}{b}$
$\Rightarrow \sqrt{5}=\frac{a}{7 b}$
R.H.S of (1) is rational but we know that $\sqrt{5}$ is irrational.

It is not possible which means our supposition is wrong.
Therefore, $7 \sqrt{5}$ cannot be rational.
Hence, it is irrational.
28. Let the two consecutive odd positive integers be ' x ' \& ' $x+2$ '.

According to the question :-
$\mathrm{x}^{2}+(\mathrm{x}+2)^{2}=290$
$\Rightarrow 2 \mathrm{x}^{2}+4 \mathrm{x}+4=290$
$\Rightarrow 2 \mathrm{x}^{2}+4 \mathrm{x}-286=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-143=0$
$\Rightarrow \mathrm{x}^{2}+13 \mathrm{x}-11 \mathrm{x}-143=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+13)-11(\mathrm{x}+13)=0$
$\Rightarrow(\mathrm{x}+13)(\mathrm{x}-11)=0$
$\Rightarrow \mathrm{x}-11=0[\because \mathrm{x}>0 \therefore \mathrm{x}+13 \neq 0]$
$\Rightarrow \mathrm{x}=11 \& \mathrm{so}, \mathrm{x}+2=13$
Hence, required consecutive odd positive integers are 11 and 13.

Let the base of the right triangle be x cm .
Then altitude $=(\mathrm{x}-7) \mathrm{cm}$
Hypotenuse $=13 \mathrm{~cm}$
By Pythagoras theorem
$(\text { Base })^{2}+(\text { Altitude })^{2}=(\text { Hypotenuse })^{2}$
$\Longrightarrow \mathrm{x}^{2}+(\mathrm{x}-7)^{2}=(13)^{2}$
$\Longrightarrow x^{2}+x^{2}-14 \mathrm{x}+49=169$
$\Longrightarrow 2 x^{2}-14 x-120=0$
$\Longrightarrow 2\left(\mathrm{x}^{2}-7 \mathrm{x}-60\right)=0$ or $\mathrm{x}^{2}-7 \mathrm{x}-60=0$
$\Longrightarrow x^{2}-12 x+5 x-60=0$
$\Longrightarrow \mathrm{x}(\mathrm{x}-12)+5(\mathrm{x}-12)=0$
$\Longrightarrow(x+5)(x-12)=0$
Either $\mathrm{x}+5=0$ or $\mathrm{x}-12=0$
$\Longrightarrow x=-5,12$
Since side of the triangle cannot be negative. So, $\mathrm{x}=12 \mathrm{~cm}$ and $\mathrm{x}=-5$ is rejected.
Hence, length of the other two sides are $12 \mathrm{~cm},(12-7)=5 \mathrm{~cm}$.
29. $7 \mathrm{y}^{2}-\frac{11}{3} y-\frac{2}{3}$
$=\frac{1}{3}\left(21 y^{2}-11 y-2\right)$
$=\frac{1}{3}\left(21 y^{2}-14 y+3 y-2\right)$
$=\frac{1}{3}[7 y(3 y-2)+1(3 y-2)]$
$=\frac{1}{3}(3 y-2)(7 y+1)$
$\Rightarrow y=\frac{2}{3}, \frac{-1}{7}$ are zeroes of the polynomial.
If Given polynimoal is $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$
Then $\mathrm{a}=7, \mathrm{~b}=-\frac{11}{3}$ and $\mathrm{c}=-\frac{2}{3}$
Sum of zeroes $=\frac{2}{3}+\frac{-1}{7}=\frac{14-3}{21}=\frac{11}{21}$
Also, $\frac{-b}{a}=\frac{-\left(\frac{-11}{3}\right)}{7}=\frac{11}{21}$
From (i) and (ii)
Sum of zeroes $=\frac{-b}{a}$
Now, product of zeroes $=\frac{2}{3} \times \frac{-1}{7}=\frac{-2}{21}$ \qquad
Also, $\frac{c}{a}=\frac{\frac{-2}{3}}{7}=\frac{-2}{21}$ (iv)

From (iii) and (iv)
Product of zeroes $=\frac{c}{a}$
30. We know that, the sum of three angles of a triangle is 180°.

In $\triangle \mathrm{PQR}, \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow 55^{\circ}+25^{\circ}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow \angle \mathrm{R}=180^{\circ}-\left(55^{\circ}+25^{\circ}\right)=180^{\circ}-80^{\circ}=100^{\circ}$
In $\triangle \mathrm{TSM}, \angle \mathrm{T}+\angle \mathrm{S}+\angle \mathrm{M}=180^{\circ}$
$\Rightarrow \angle \mathrm{T}+\angle 25^{\circ}+1000^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{T}=180^{\circ}-\left(25^{\circ}+100^{\circ}\right)$
$=180^{\circ}-125^{\circ}=55^{\circ}$

In $\triangle P Q R$ and $\triangle T S M$, we have
$\angle \mathrm{P}=\angle \mathrm{T}, \angle \mathrm{Q}=\angle \mathrm{S}$,
and $\angle \mathrm{R}=\angle \mathrm{M}$
Therefore, $\triangle \mathrm{PQR} \sim \triangle \mathrm{TSM}$ [since, all corresponding angles are equal]
Hence, $\triangle \mathrm{QPR}$ is not similar to $\triangle \mathrm{TSM}$, since correct correspondence is $\mathrm{P} \leftrightarrow \mathrm{T}, \mathrm{Q}<\mathrm{r} \leftrightarrow \mathrm{S}$ and $\mathrm{R} \leftrightarrow \mathrm{M}$.
OR

Distance traveled by the plane flying toward north in $1 \frac{1}{2} \mathrm{hrs}$
$=1,000 \times 1 \frac{1}{2}=1,500 \mathrm{~km}$
Similarly, distance traveled by the plane flying towards west in $1 \frac{1}{2} \mathrm{hrs}$
$=1,200 \times 1 \frac{1}{2}=1,800 \mathrm{~km}$
Let these distances are represented by OA and OB respectively.
Now applying Pythagoras theorem
Distance between these planes after $1 \frac{1}{2} \mathrm{hrs} A B=\sqrt{O A^{2}+O B^{2}}$
$=\sqrt{(1,500)^{2}+(1,800)^{2}}=\sqrt{2250000+3240000}$
$=\sqrt{5490000}=\sqrt{9 \times 610000}=300 \sqrt{61}$
So, distance between these planes will be $300 \sqrt{61} \mathrm{~km}$, after $1 \frac{1}{2} \mathrm{hrs}$.
31. According to the question, A child's game has 8 triangles of which 3 are blue and rest are red, and 10 squares of which 6 are blue and rest are red.
Total number of pieces $=8+10=18$
i. No. of triangles $=8$.

Hence, $P($ triangle is lost $)=\frac{8}{18}=\frac{4}{9}$
ii. No. of squares $=10$

Hence, $\mathrm{P}($ square is lost $)=\frac{10}{18}=\frac{5}{9}$
iii. No. of squares of blue colour $=6$.

So, $\mathrm{P}\left(\right.$ square of blue colour is lost) $=\frac{6}{18}=\frac{1}{3}$
iv. No. of triangles of red colour $=8-3=5$

So, $\mathrm{P}($ triangle of red colour is lost $)=\frac{5}{18}$
32. In right triangle $A B Q$,

$\tan 45^{\circ}=\frac{A B}{B Q}$
$\Rightarrow 1=\frac{75}{\mathrm{BQ}}$
$\Rightarrow \mathrm{BQ}=75 \mathrm{~m}$
In right triangle $A B P$,
$\tan 30^{\circ}=\frac{A B}{B P}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{B Q+Q P}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{75+Q P}$ [From eq. (i)]
$\Rightarrow 75+\mathrm{QP}=75 \sqrt{3}$
$\mathrm{QP}=75(\sqrt{3}-1) \mathrm{m}$
Hence the distance between the two ships is $75(\sqrt{3}-1) \mathrm{m}$.
33. We first find the class mark x_{i}, of each class and then proceed as follows

Weight (in kg)	Number of wrestles $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class Marks $\left(\mathrm{x}_{\mathrm{i}}\right)$	Deviation $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$	$\mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$
$100-110$	4	105	-20	-80
$110-120$	14	115	-10	-140
$120-130$	21	$\mathrm{a}=125$	0	0
$130-140$	8	135	10	80
$140-150$	3	145	20	60
	$N=\sum f_{i}=50$		$\sum f_{i} d_{i}=-80$	

\therefore Assumed mean, (a) $=125$
Class width, (h) = 10
and total observations, $(\mathrm{N})=50$
By step deviation method,
$\operatorname{Mean}(\bar{x})=a+\frac{\sum f_{d} d}{\sum f_{i}}$
Mean $(\bar{x})=125+\frac{(-80)}{50}$
= 125-16
$=123.4 \mathrm{~kg}$
Hence, mean weight of wrestlers $=123.4 \mathrm{~kg}$
34. $\angle \mathrm{C}=3 \angle \mathrm{~B}=2(\angle \mathrm{~A}+\angle \mathrm{B})$

Taking $3 \angle \mathrm{~B}=2(\angle \mathrm{~A}+\angle \mathrm{B})$
$\Rightarrow \angle \mathrm{B}=2 \angle \mathrm{~A}$
$\Rightarrow 2 \angle \mathrm{~A}-\angle \mathrm{B}=0$
We know that the sum of the measures of all angles of a triangle is 180°.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+3 \angle \mathrm{~B}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+4 \angle \mathrm{~B}=180^{\circ}$ \qquad
Multiplying equation (1) by 4, we obtain:
$8 \angle A-4 \angle B=0 \ldots \ldots$. (3)
Adding equations (2) and (3), we get
$9 \angle \mathrm{~A}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=20^{\circ}$
From eq. (2), we get,
$20^{\circ}+4 \angle B=180^{\circ}$
$\Rightarrow \angle \mathrm{B}=40^{\circ}$
And $\angle \mathrm{C}=3 \times 40^{\circ}=120^{\circ}$
Hence the measures of $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are $20^{\circ}, 40^{\circ}$ and 120° respectively.
OR
i. By Elimination method

The given system of equation is
$\frac{x}{2}+\frac{2 y}{3}=-1$
$x-\frac{y}{3}=3$.
Multiplying equation (2) by 2, we get
$2 x-\frac{2 y}{3}=6$.(3)
Adding equation(1) and equation (2), we get
$\frac{5}{2} x=5 \Rightarrow x=\frac{5 \times 2}{5} \Rightarrow \quad x=2$
Substituting this value of x in equation(2), we get
$2-\frac{y}{3}=3 \Rightarrow \frac{y}{3}=2-3=-1 \Rightarrow \quad y=-3$

So, the solution of the given system of equation is
$\mathrm{x}=2, \mathrm{y}=-3$
ii. By substitution method

The given system of equation is
$\frac{x}{2}+\frac{2 y}{3}=-1$.
$x-\frac{y}{3}=3$.
From equation (2),
$x=\frac{y}{3}+3$.
Substituting this value of x in (1),
$\frac{1}{2}\left(\frac{y}{3}+3\right)+\frac{2 y}{3}=-1$
$\Rightarrow \quad \frac{y}{6}+\frac{3}{2}+\frac{2 y}{3}=-1 \Rightarrow \quad \frac{5 y}{6}=-1-\frac{3}{2}$
$\Rightarrow \quad \frac{5 y}{6}--\frac{5}{2} \Rightarrow y=-3$
Substituting this value of y in equation (3), we get
$x=-\frac{3}{3}+3=-1+3-2$
So, the solution of the given system of equations is $x=2, y=-3$
Verification: Substituting $x=2, y=-3$, we find that both the equation (1) and (2) are satisfied as shown below:
$\frac{x}{2}+\frac{2 y}{3}=\frac{2}{2}+\frac{2(-3)}{3}=1-2=-1$
35. Area of minor segment $=$ Area of sector - Area of $\triangle \mathrm{OAB}$

In $\triangle \mathrm{OAB}$,

$\theta=60^{\circ}$
$\mathrm{OA}=\mathrm{OB}=\mathrm{r}=12 \mathrm{~cm}$
$\angle \mathrm{B}=\angle \mathrm{A}=\mathrm{x}[\angle \mathrm{s}$ opp. to equal sides are equal]
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{O}=180^{\circ}$
$\Rightarrow \mathrm{x}+\mathrm{x}+60^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=180^{\circ}-60^{\circ}$
$\Rightarrow \mathrm{x}=\frac{120^{\circ}}{2}=60^{\circ}$
$\therefore \triangle \mathrm{OAB}$ is equilateral \triangle with each side (a) $=12 \mathrm{~cm}$
Area of the equilateral $\triangle=\frac{\sqrt{3}}{4} a^{2}$
Area of minor segment $=$ Area of the sector - Area of $\triangle \mathrm{OAB}$
$=\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{\sqrt{3}}{4} a^{2}$
$=\frac{3.14 \times 12 \times 12 \times 60^{\circ}}{360^{\circ}}-\frac{\sqrt{3}}{4} \times 12 \times 12$
$=6.28 \times 12-36 \sqrt{3}$
\therefore Area of minor segment $=(75.36-36 \sqrt{3}) \mathrm{cm}^{2}$.
36.

Let BC be the building, AB be the transmission tower, and D be the point on the ground.

In $\triangle \mathrm{BCD}$,
$\frac{B C}{C D}=\tan 45^{\circ}$
$\Rightarrow \frac{20}{C D}=1$
$\Rightarrow C D=20$
In $\triangle \mathrm{ACD}$,
$\frac{A C}{C D}=\tan 60^{\circ}$
$\Rightarrow \frac{A B+B C}{C D}=\sqrt{3}$
$\Rightarrow \frac{A B+20}{20}=\sqrt{3}$
$\Rightarrow A B+20=20 \sqrt{3}$
$\Rightarrow A B=20(\sqrt{3}-1) m$.

