Solution

Class 12 - Mathematics

2020-21 paper 8

Part - A Section - I

1. Suppose fis not one-one.

Then there exists two elements, say 1 and 2 in the domain whose image in the co-domain is the same. Also, the image of 3 under f can be only one element.
Therefore, the range set can have at the most two elements of the co-domain $\{1,2,3\}$, showing that f is not onto, a contradiction. Hence, f must be one-one.

OR
The given relation R in the set $\{1,2,3\}$ is given by $\mathrm{R}=\{(1,2),(2,1)\}$
We know that, for a relation to be transitive,
$(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ and $(\mathrm{y}, \mathrm{z}) \in \mathrm{R} \Rightarrow(\mathrm{x}, \mathrm{z}) \in \mathrm{R}$.
Here, $(1,2) \in R$ and $(2,1) \in R$
but $(1,1) \notin R$.
Therefore, R is not transitive.
2. f is a function since each element of A in the first place in the ordered pairs is related to only one element of A in the second place while g is not a function because 1 is related to more than one element of A, namely, 2 and 3.

OR
R is reflexive and symmetric, but not transitive since for $(1,0) \in R$ and $(0,3) \in R$ whereas $(1,3) \notin R$.
3. We have, $\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}]=\{x\}$ (fractinal part of x)

Injection test:

$\mathrm{f}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{Z}$
So, f is a many-one function.

Surjection test:

Range (f) $=[0,1) \neq R$.
So, f is an into function.
Therefore, f is neither one-one nor onto.
4. Order of matrix $=$ Number of rows \times Number of columns.

Thus order $=(1 \times 4)$
5. We have to find,

A - 2B $+3 C$ i,e,
$A-2 B+3 C=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-2\left(\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]\right)+3\left(\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]\right)$
$=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-\left[\begin{array}{cc}2 & 6 \\ -4 & 10\end{array}\right]+\left[\begin{array}{cc}-6 & 15 \\ 9 & 12\end{array}\right]$
$=\left[\begin{array}{cc}-6 & 13 \\ 16 & 4\end{array}\right]$
OR
$A^{\prime}=\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]$
$\Rightarrow A^{\prime}=-\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$
$\Rightarrow \mathrm{A}^{\prime}=-\mathrm{A}$
Hence Proved.
6. After finding determinant we will get a trigonometric identity.
$2 \cos ^{2} \theta+2 \sin ^{2} \theta=2$

Since we know
$\sin ^{2} \theta+\cos ^{2} \theta=1$
7. We know that $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}-16} d x=\int \sqrt{x^{2}-4^{2}} d x$
$=\frac{x}{2} \cdot \sqrt{x^{2}-4^{2}}-\frac{16}{2} \log \left|x+\sqrt{x^{2}-16}\right|+C$
$=\frac{x}{2} \cdot \sqrt{x^{2}-16}-8 \log \left|x+\sqrt{x^{2}-16}\right|+C[\mathrm{a}=4]$
OR
On dividing $\left(\mathrm{x}^{4}+1\right)$ by $\left(\mathrm{x}^{2}+1\right)$, we get
$\int\left(\frac{x^{4}+1}{x^{2}+1}\right) d x=\int\left[x^{2}-1+\frac{2}{\left(x^{2}+1\right)}\right] d x$
$=\int x^{2} d x-\int d x+2 \int \frac{1}{x^{2}+1} d x$
$=\frac{x^{3}}{3}-x+2 \tan ^{-1} x+C$,where C is constant of integration.
8. we have, $\int_{0}^{a} f(x) d x=\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$

Differentiating w.r.t a,we get,
$\mathrm{f}(\mathrm{a})=\mathrm{a}+\frac{1}{2}(\sin a+a \cos a)-\frac{\pi}{2} \sin a$
put $\mathrm{a}=\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\frac{1}{2}-\frac{\pi}{2}=\frac{1}{2}$
9. In the given equation, the highest-order derivative is $\frac{d^{2} y}{d x^{2}}$ and its power is 2
\therefore its order $=2$ and degree $=2$.
OR
It is given that equation is $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
We can see that the highest order derivative present in the given differential equation is $\frac{d^{2} y}{d x^{2}}$
Thus, its order is two. The given differential equation is not a polynomial equation in its derivative.
Therefore, its degree is not defined.
10. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{7}+14 \mathrm{x}^{5}+16 \mathrm{x}^{3}+30 \mathrm{x}-560=0$
$f^{\prime}(x)=7 x^{6}+70 x^{4}+48 x^{2}+30>0, \forall x \in R$
So, $\mathrm{f}(\mathrm{x})$ is increasing.
Hence, $f(x)=0$ has only one solution.
Or according to the rule of signs, $f(x)$ has the sign change in the coefficients only once (between the coefficient of x and the constant term). So there is exactly only one positive real root/solution for $\mathrm{f}(\mathrm{x})$.
11. Let $x_{1}, x_{2} \in R$ and let $x_{1}<x_{2}$.Then,
$x_{1}<x_{2} \Rightarrow 2 x_{1}<2 x_{2} \Rightarrow 2 x_{1}+3<2 x_{2}+3 \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
$x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in R$. So, $f(x)$ is strictly increasing function on R This result also follows from the below graph.

12. 5 Seconds is a time period, it has only magnitude i.e; 5 and has no direction, So it is Scalar.
13. We know that the perpendicular distance of a point with position vector $\overrightarrow{r_{1}}$ from the plane $\vec{r} \vec{n}=q$ is given by $P=\frac{\left|\vec{r}_{1} \vec{n}+q\right|}{|\vec{n}|}$,
Here, $\vec{r}_{1}=\hat{i}+\hat{j}+2 \hat{k}, \vec{n}=2 \hat{i}-2 \hat{j}+4 \hat{k}$ and $q=5$
$\therefore P=\frac{|(i+j+2 \hat{k})(2 \hat{i}-2 \hat{j}+4 \hat{k})+5|}{|2 \hat{i}-2 \hat{j}+4 \hat{k}|}=\left|\frac{2-2+8+5}{\sqrt{(2)^{2}+(-2)^{2}+(4)^{2}}}\right|=\frac{13}{2 \sqrt{6}}$ units
$=\frac{13 \sqrt{6}}{12}$ units.
14. We know that the planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ are perperndicular if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$.
The given planes are $\mathrm{x}-2 \mathrm{y}+4 \mathrm{z}=10$ and $18 \mathrm{x}+17 \mathrm{y}+4 \mathrm{z}=49$
$\Rightarrow a_{1}=1 ; b_{1}=-2 ; c_{1}=4 ; a_{2}=18 ; b_{2}=17 ; c_{2}=4$
Now, $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=(1)(18)+(-2)(17)+(4)(4)=18-34+16=0$
So, the given planes are perpendicular to each other.
15. Expanding the given determinant along 1st row, we have
$\Delta=3 \cdot\left|\begin{array}{cc}2 & -3 \\ 1 & 7\end{array}\right|-4 \cdot\left|\begin{array}{cc}-6 & -3 \\ 8 & 7\end{array}\right|+5 \cdot\left|\begin{array}{cc}-6 & 2 \\ 8 & 1\end{array}\right|$
$=3 .(14+3)-4 .(-42+24)+5 .(-6-16)$
$=13$
16. We know that
$\mathrm{P}(\mathrm{S} \mid \mathrm{F})=\frac{P(S \cap F)}{P(F)}=\frac{P(F)}{P(F)}=1$
Also, $\mathrm{P}(\mathrm{S} \mid \mathrm{F})=\frac{P(F \cap F)}{P(F)}=\frac{P(F)}{P(F)}=1$
Thus, $\mathrm{P}(\mathrm{S} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{F})=1$

Section- II

17. i. (a) ₹ 2
ii. (c) ₹ 17
iii. (a) ₹7
iv. (a) ₹20
v. (a) ₹22
18. i. (a) Team B
ii. (b) 1.4 KN
iii. (c) 2.4 radian
iv. (a) $2 \sqrt{5} \mathrm{KN}$
v. (b) 4 KN

Part - B Section - III

19. Let $\sin ^{-1}\left(\frac{-1}{2}\right)=y$
$\Rightarrow \sin y=-\frac{1}{2}$
$\Rightarrow \sin y=-\sin \frac{\pi}{6}$
$\Rightarrow \sin y=\sin \left(-\frac{\pi}{6}\right)$
Since, the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, principal value of $\sin ^{-1}\left(\frac{-1}{2}\right)$ is $-\frac{\pi}{6}$.
20. Let $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 1\end{array}\right] B=\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]$
$\Rightarrow \mathrm{AX}=\mathrm{B}$
Or, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$|\mathrm{A}|=1$
Now Cofactors of A are
$\mathrm{C}_{11}=1 \mathrm{C}_{12}=-1$
$\mathrm{C}_{21}=-4 \mathrm{C}_{22}=5$
$\Rightarrow \operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{12} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right]^{\mathrm{T}}$
$(\operatorname{adj} \mathrm{A})=\left[\begin{array}{cc}1 & -1 \\ -4 & 5\end{array}\right]^{T}$
$=\left[\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right]$
Now, $\mathrm{A}^{-1}=\frac{1}{|A|}$ adj A
$\mathrm{A}^{-1}=\frac{1}{1}\left[\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right]$
So, $\mathrm{X}=\left[\begin{array}{cc}1 & -4 \\ -1 & 5\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]$
Hence, $X=\left[\begin{array}{cc}-3 & -14 \\ 4 & 17\end{array}\right]$
OR
We have given that,
$\operatorname{ar}(\Delta \mathrm{ABC})=3$ sq units .
$\Leftrightarrow \frac{1}{2} \cdot\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|= \pm 3 \Leftrightarrow\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|= \pm 6$
$\Leftrightarrow(-1) \cdot\left|\begin{array}{ll}1 & 3 \\ k & 0\end{array}\right|= \pm 6 \Leftrightarrow 3 k= \pm 6 \Leftrightarrow k= \pm 2$
Hence, $\mathrm{k}= \pm 2$
21. Given: $f(x)=|\cos x| \ldots .$. (i)
$\mathrm{f}(\mathrm{x})$ has a real and finite value for all $x \in R$.
\therefore Domain of $\mathrm{f}(\mathrm{x})$ is R .
Let $\mathrm{g}(\mathrm{x})=\cos \mathrm{x}$ and $h(x)=|x|$
Since $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ being cosine function and modulus function are continuous for all real x
Now, (goh) $x=g\{h(x)\}=g(|x|)=\cos |x|$ being the composite function of two continuous functions is continuous, but not equal to $\mathrm{f}(\mathrm{x})$
Again, (hog) $x=h\{g(x)\}=h(\cos x)=|\cos x|=f(x)[U s i n g$ eq. (i)]
Therefore, $f(x)=|\cos x|=(\operatorname{hog}) x$ being the composite function of two continuous functions is continuous.
22. Given: The equation of the curve is-
$y=2 x^{3}-3 \ldots$ (i)
Differentiating with respect to x , we get
$\frac{d y}{d x}=6 x^{2}$
Now, $\mathrm{m}_{1}=($ Slope of the tangent at point $\mathrm{x}=2)=\left(\frac{d y}{d x}\right)_{x=2}=6 \times(2)^{2}=24$
and $\mathrm{m}_{2}=($ Slope of the tangent at point $\mathrm{x}=-2)=\left(\frac{d y}{d x}\right)_{x=-2}^{x=2}=6(-2)^{2}=24$
Clearly, $\mathrm{m}_{1}=\mathrm{m}_{2}$.
Thus, the tangents to the given curve at the points where $\mathrm{x}=2$ and $\mathrm{x}=-2$ are parallel.
23. Using the superiority list as ILATE (Inverse Logarithm Algebra Trigonometric Exponential). Taking the first function to the one which comes first in the list.
Here x is the first function, and $\cos \mathrm{x}$ is the second function.
Using Integration by part
$\int a . b \cdot d x=a \int b d x-\int\left[\frac{d a}{d x} \cdot \int b d x\right] d x$
$\Rightarrow \int \mathrm{x} \cos \mathrm{xdx}=\mathrm{x} \int \cos \mathrm{x}-\int\left[\frac{d x}{d x} \int \cos x d x\right] d x$
$=\mathrm{x} \sin \mathrm{x}-\int 1 \cdot \sin \mathrm{xdx}$
$=\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}+\mathrm{c}$

Let $\mathrm{I}=\int \mathrm{e}^{\mathrm{x}}(\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}$
$=\int e^{x} \cos x d x-\int e^{x} \sin x d x$
Integrating by parts
$=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}-\int \mathrm{e}^{\mathrm{x}}\left(\frac{d}{d x} \cos x\right) \mathrm{dx}-\int \mathrm{e}^{\mathrm{x}} \sin \mathrm{x} \mathrm{dx}$
$=e^{x} \cos x+\int e^{x} \sin x d x-\int e^{x} \sin x d x$
$=e^{x} \cos x+c$
$\therefore \int \mathrm{e}^{\mathrm{x}}(\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}+\mathrm{c}$
24. $y^{2}=4 x$
$\mathrm{x}=3$
$=2 \int_{0}^{3} \sqrt{4 x} d x$
$=4 \int_{0}^{3} \sqrt{x} d x$
$=4\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{3}$
$=\frac{8}{3}\left[3^{3 / 2}-0\right]$
$=8 \sqrt{3}$ sq. units

25. Given differential equation is $2 x \frac{d y}{d x}+y=6 x^{3}$
$\Rightarrow \frac{d y}{d x}+\frac{1}{2 x} \cdot y=3 x^{2}$
This is of the form $\frac{d y}{d x}+P y=Q$ where $P=\frac{1}{2 x}$ and $\mathrm{Q}=3 \mathrm{x}^{2}$
Thus the differential equation is linear
Now, $I F=e^{\int P d x}$
$=e^{\int \frac{d x}{2 x}}=e^{\frac{1}{2} \log x}=x^{1 / 2}$
There fore the solution is given by
$y(I F)=\int(I F) Q d x+C$
$\Rightarrow y \cdot x^{1 / 2}=\int x^{1 / 2} \cdot 3 x^{2} d x+C$
$\Rightarrow y \cdot x^{1 / 2}=3 \int x^{3 / 2} d x+C \Rightarrow y \cdot x^{1 / 2}=3 \cdot \frac{x}{7 / 2}+C$
$\Rightarrow y \cdot x^{1 / 2}=\frac{6}{7} x^{1 / 2}+C \Rightarrow y=\frac{6}{7} \cdot x^{3}+\frac{C}{\sqrt{x}}$
This is the required solution of given differential equation.
26. $\frac{d x}{d t}=3 a \sin ^{2} t . \cos t d t$
$\frac{d y}{d t}=-3 b \cos ^{2} t \sin t d t$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-3 b \cos ^{2} \operatorname{tsin} t}{3 a \sin ^{2} t \cos t}=\frac{-b}{a} \cot t$
$\left.\frac{d y}{d x}\right]_{t=\frac{\pi}{2}}=\frac{-b}{a} \times \cot \frac{\pi}{2}=\frac{-b}{a} \times 0=0$
When $t=\frac{\pi}{2}, x=a$ and $\mathrm{y}=0$
Therefore ,equation of tangent is,
$y-y_{1}=\frac{d y}{d x}\left(x-x_{1}\right), y-0=0(x-a)$ i.e $\mathrm{y}=0$
27. Here,the given equations of lines are
$\frac{x}{-3}=\frac{y-2}{4}=\frac{z+1}{1}$ and $\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z}{\frac{1}{2}}$,
i.e., $\frac{x}{-3}=\frac{y-2}{4}=\frac{z+1}{1}$ and $\frac{x-4}{2}=\frac{y-1}{-4}=\frac{z}{1}$.

Therefore, the required plane passes through the point $\mathrm{A}(2,0,-1)$ and it is parallel to the lines having direction ratios $-3,4,1$ and $2,-4,1$.
Here ($x_{1}=2, y_{1}=0, z_{1}=-1$), $\left(a_{1}=-3, b_{1}=4, c_{1}=1\right)$
and ($\mathrm{a}_{2}=2, \mathrm{~b}_{2}=-4, \mathrm{c}_{2}=1$).
The required equation of the plane is
$\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-2 & y-0 & z+1 \\ -3 & 4 & 1 \\ 2 & -4 & 1\end{array}\right|=0$
$\Rightarrow(\mathrm{x}-2)(4+4)-\mathrm{y}(-3-2)+(\mathrm{z}+1)(12-8)=0$
$\Rightarrow 8(\mathrm{x}-2)+5 \mathrm{y}+4(\mathrm{z}+1)=0$
$\Rightarrow 8 \mathrm{x}+5 \mathrm{y}+4 \mathrm{z}-12=0$
Therefore, the required Cartesian equation of the plane is $8 x+5 y+4 z=12$ and its corresponding vector equation is $r \cdot(8 \hat{i}+5 \hat{j}+4 \hat{k})=12$.
28. Let A and B denote respectively the events that first and second balls both drawn are white.

Therefore, we have to find $P(A \cap B)$
Then, $\mathrm{P}(\mathrm{A})=\mathrm{P}($ white ball in the first draw $)=\frac{8}{12}$
After the occurrence of event A, we are left with 7 white and 4 red balls. The probability of drawing second white ball, given that the first ball drawn is white, is clearly the conditional probability of occurrence of B, given that A has occurred.Therefore,we have,
$\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{7}{11}$
By multiplication rule of probability, we have,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} / \mathrm{A})=\left(\frac{8}{12} \times \frac{7}{11}\right)=\frac{14}{33}$
OR
Using Bernoulli's Trial $P($ Success $=x)={ }^{n} C_{x} \cdot P^{x} \cdot q^{(n-x)}$
$\mathrm{x}=0,1,2, \ldots \mathrm{n}$ and $\mathrm{q}=(1-\mathrm{p})$
As the die is thrown 6 times the total number of outcomes will be 6^{6}.
And we know that the favourable outcomes of getting at least 5 successes will be, either getting 2,4 or 6 i.e, $\frac{1}{6}$ probability of each, total, $\frac{3}{6}$ probability, $p=\frac{3}{6}, q=\frac{3}{6}$
The probability of success is $\frac{3}{6}$ and of failure is also $\frac{3}{6}$.
Therefore, the probability of getting at least 5 successes will be,
$=\left({ }^{6} C_{5}+{ }^{6} C_{6}\right)\left(\frac{3}{6}\right)^{6}$
$=\left({ }^{6} C_{5}+{ }^{6} C_{6}\right) \frac{1}{64}$
$=\frac{7}{64}$
This is the required probability.

Section - IV

29. Part I: $R=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1}\right.$ is similar to $\left.\mathrm{T}_{2}\right\}$ and $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are triangles.

We know that each triangle similar to itself and thus $\left(\mathrm{T}_{1}, \mathrm{~T}_{1}\right) \in \mathrm{R} \therefore \mathrm{R}$ is reflexive.
Also if two triangles are similar, then $\mathrm{T}_{1} \cong \mathrm{~T}_{2} \Rightarrow \mathrm{~T}_{1} \cong \mathrm{~T}_{2} \therefore \mathrm{R}$ is symmetric.
Again, if $\mathrm{T}_{1} \cong \mathrm{~T}_{2}$ and $\mathrm{T}_{2} \cong \mathrm{~T}_{3} \Rightarrow$ then $\mathrm{T}_{1} \cong \mathrm{~T}_{3} \therefore \mathrm{R}$ is transitive.
Therefore, R is an equivalent relation.
Part II: It is given that $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} are right angled triangles.
$\Rightarrow \mathrm{T}_{1}$ with sides $3,4,5, \mathrm{~T}_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$
Since, two triangles are similar if corresponding sides are proportional.

Therefore, $\frac{3}{6}=\frac{4}{8}=\frac{5}{10}=\frac{1}{2}$
Therefore, T_{1} and T_{3} are related.
30. According to the question, $y=\sin ^{-1} x$

Differentiating both sides w.r.t x,
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} \Rightarrow \sqrt{1-x^{2}} \frac{d y}{d x}=1$
Squaring both sides,
$\Rightarrow\left(1-x^{2}\right)-\left(\frac{d y}{d x}\right)^{2}=1$
Differentiating both sides w.r.t x,
$\Rightarrow\left(1-x^{2}\right) 2\left(\frac{d y}{d x}\right)\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}(-2 x)=0$
Dividing both sides by $2\left(\frac{d y}{d x}\right)$,
$\Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
Hence Proved.
31. We have, $x y=4$
$\Rightarrow y=\frac{4}{x}$
Differentiate it with respect to x ,
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{4}{x}\right)$
$\Rightarrow \frac{d y}{d x}=4 \frac{d}{d x}\left(x^{-1}\right)$
$\Rightarrow \frac{d y}{d x}=4\left(-1 \times x^{-1-1}\right)$
$\Rightarrow \frac{d y}{d x}=4\left(-\frac{1}{x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{-4}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=-\frac{4}{\left(\frac{4}{y}\right)^{2}}\left[\because x=\frac{4}{y}\right]$
$\Rightarrow \frac{d y}{d x}=-\frac{4 y^{2}}{16}$
$\Rightarrow \frac{d y}{d x}=-\frac{y^{2}}{4}$
$\Rightarrow 4 \frac{d y}{d x}=-y^{2}$
$\Rightarrow 4 \frac{d y}{d x}=3 y^{2}-4 y^{2}$
$\Rightarrow 4 \frac{d y}{d x}+4 y^{2}=3 y^{2}$
$\Rightarrow 4\left(\frac{d y}{d x}+y^{2}\right)=3 y^{2}$
Divide both side by x,
$\Rightarrow \frac{4}{x}\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{x}$
$\Rightarrow y\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{x}$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=\frac{3 y^{2}}{y}$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=3 y$
LHS=RHS
Hence Proved.

Here,
$y=x^{2}+x$
since, y is a polynomial function, so it continuous differentiable,
Lagrange's mean value theorem is applicable, so, there exist a point c such that,
$\Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\Rightarrow 2 c+1=\frac{f(1)-f(0)}{1-0}$
$\Rightarrow 2 \mathrm{c}+1=2$
$\Rightarrow c=\frac{1}{2}$
$\Rightarrow y=\left(\frac{1}{2}\right)^{2}+\frac{1}{2}$
$\Rightarrow y=\frac{3}{4}$
So, $(c, y)=\left(\frac{1}{2}, \frac{3}{4}\right)$ is the required point according to the question.
32. Here, it is given the curve $y=x^{2}-x+2$ has a point crosses the y-axis.

The curve will be in the form of $(0, y)$
$\Rightarrow \mathrm{y}=0-0+2$
$\Rightarrow \mathrm{y}=2$
Therefore, the point at which curve crosses the y-axis (0,2).
Now, differentiating the equation of curve w.r.t. x.
$\frac{d y}{d x}=x-1$
For (0,2),
$\frac{d y}{d x}=-1$
Equation of the tangent:
($y-y 1$) $=$ Slope of tangent $\times\left(x-x_{1}\right)$
$\Rightarrow(y-2)=-1 \times(x-0)$
$\Rightarrow \mathrm{y}-2=\mathrm{x}$
$\Rightarrow \mathrm{x}+\mathrm{y}=2$
33. Let the given integral be,
$\mathrm{l}=\int \frac{2 \tan x+3}{3 \tan x+4} d x$
$=\int\left(\frac{\frac{2 \sin x}{\cos x}+3}{\frac{3 \sin x}{\cos x}+4}\right) d x$
$=\int\left(\frac{2 \sin x+3 \cos x}{3 \sin x+4 \cos x}\right) d x$
Let $(2 \sin \mathrm{x}+3 \cos \mathrm{x})=\mathrm{A}(3 \sin \mathrm{x}+4 \cos \mathrm{x})+\mathrm{B}(3 \cos \mathrm{x}-4 \sin \mathrm{x}) \ldots$ (i)
$\Rightarrow 2 \sin \mathrm{x}+3 \cos \mathrm{x}=(3 \mathrm{~A}-4 \mathrm{~B}) \sin \mathrm{x}+(4 \mathrm{~A}+3 \mathrm{~B}) \cos \mathrm{x}$
Equating the coefficients of like terms
$3 \mathrm{~A}-4 \mathrm{~B}=2$...(ii)
$4 \mathrm{~A}+3 \mathrm{~B}=3$...(iii)
Multiplying equation (ii) by 3 and equation (iii) by 4 , then by adding them we get
$25 \mathrm{~A}=18$
$\Rightarrow A=\frac{18}{25}$
Putting the value of A in equation (ii) we get,
$\Rightarrow B=\frac{1}{25}$
Thus, by substituting the values of A and B in equation (i), we get
$I=\int\left\{\frac{\frac{18}{25}(3 \sin x+4 \cos x)+\frac{1}{25}(3 \cos x-4 \sin x)}{3 \sin x+4 \cos x}\right\} d x$
$=\frac{18}{25} \int d x+\frac{1}{25} \int\left(\frac{3 \cos x-4 \sin x}{3 \sin x+4 \cos x}\right) d x$
Putting $3 \sin \mathrm{x}+4 \cos \mathrm{x}=\mathrm{t}$
$(3 \cos \mathrm{x}-4 \sin \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
$\therefore I=\frac{18}{25} x+\frac{1}{25} \int \frac{1}{t} d t$
$=\frac{18 x}{25}+\frac{1}{25} \operatorname{In}|\mathrm{t}|+\mathrm{C}$
$=\frac{18 x}{25}+\frac{1}{25} \operatorname{In}|3 \sin \mathrm{x}+4 \cos \mathrm{x}|+\mathrm{C}$
34. Here, the given curves are:
$y=x^{2}$.... (i)
$y=x$.
Using eqn. (ii) in (i), gives
or $x^{2}-x=0$
or x . $(\mathrm{x}-1)=0$
$\Rightarrow x=0,1$.
But $y=x \Rightarrow y=0,1$
Thus, $(0,0)$ and $(1,1)$ are the points of intersection.
Area between ($\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$) is:
$\mathrm{A}=\int\left|\left(x-x^{2}\right) \cdot d x\right|$
$=\left|\frac{\left(x^{2}\right)}{2}-\frac{\left(x^{3}\right)}{3}\right|$
Using limits from 0 , to 1 , we get
$\mathrm{A}=\left(\frac{1}{2}-\frac{1}{3}\right)-(0-0)$
$=\frac{1}{6}$ sq.unit
OR
Given equation of the curve is $y=\sqrt{x-1}$
$\Rightarrow y^{2}=x-1$

\therefore Area of shaded region, $A=\int_{1}^{5}(x-1)^{1 / 2} d x=\left[\frac{2 .(x-1)^{3 / 2}}{3}\right]_{1}^{5}$
$=\left[\frac{2}{3} \cdot(5-1)^{3 / 2}-0\right]=\frac{16}{3}$ sq unit
35. We can write the given differential equation as,
$\left(\frac{y}{x}+\mathrm{y}^{2} \sin \frac{y}{x}\right) \mathrm{dx}=\left(\mathrm{xy} \sin \frac{y}{x}-\mathrm{x}^{2} \cos \frac{y}{x}\right) \mathrm{dy}$
$\Rightarrow \frac{d y}{d x}=\frac{\left\{x y \cos \frac{y}{x}+y^{2} \sin \frac{y}{x}\right\}}{\left\{x y \sin \frac{y}{x}-x^{2} \cos \frac{y}{x}\right\}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(\frac{y}{x}\right) \cos \left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2} \sin \left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right) \sin \left(\frac{y}{x}\right)-\cos \left(\frac{y}{x}\right)}=f\left(\frac{y}{x}\right)$
Therefore, the given differential equation is homogeneous.
Put $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in (i),
$\Rightarrow \quad x \frac{d v}{d x}=\left\{\frac{\left(v \cos v+v^{2} \sin v\right)}{(v \sin v-\cos v)}-v\right\}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{2 v \cos v}{(v \sin v-\cos v)}$
$\Rightarrow \int \frac{(v \sin v-\cos v)}{v \cos v} d v=\int \frac{2}{x} d x$
$\Rightarrow \int \tan \mathrm{vdv}-\int \frac{d v}{v}=\int \frac{2}{x} d x$
$\Rightarrow-\log |\cos \mathrm{v}|-\log |\mathrm{v}|-2 \log |\mathrm{x}|=\mathrm{constant}$
$\Rightarrow \log |\cos \mathrm{v}|+\log |\mathrm{v}|+2 \log |\mathrm{x}|=\log \left|\mathrm{C}_{1}\right|$ where C_{1} is an arbitrary constant
$\Rightarrow \log \left|\mathrm{x}^{2} \mathrm{v} \cos \mathrm{v}\right|=\log \left|\mathrm{C}_{1}\right|$
$\Rightarrow \mathrm{X}^{2} \mathrm{v} \cos \mathrm{v}= \pm \mathrm{C}_{1}=\mathrm{C}$ (say)
$\Rightarrow \mathrm{xy} \cos \frac{y}{x}=\mathrm{C}$, which is the required solution $\left[\because \mathrm{v}=\frac{y}{x}\right]$
Section - V
36. Let E_{1} : Transferred ball is green
E_{2} : Transferred ball is red
A: Green ball is found

Here, $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{4}{6}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=\frac{6}{9}, \mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=\frac{5}{9}$
Using Baye's theorem
$\mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right)=\frac{P\left(E_{1}\right) \cdot P\left(A / E_{1}\right)}{P\left(E_{1}\right) \cdot P\left(A / E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A / E_{2}\right)}$
$=\frac{\frac{2}{6} \times \frac{6}{9}}{\frac{2}{6} \times \frac{6}{9}+\frac{4}{6} \times \frac{5}{9}}$
$=\frac{12}{12+20}=\frac{3}{8}$
OR
Let us define the events as
E_{1} : Boy is selected
E_{2} : Girl is selected
A: The student has an IQ of more than 150 students.
Now, $\mathrm{P}\left(\mathrm{E}_{1}\right)=60 \%=\frac{60}{100}$
Now, $\mathrm{P}\left(\mathrm{E}_{2}=40 \%=\frac{40}{100}\right)[\because$ in the class 60% students are boys, so 40% are girls, given $]$
Now, $\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=$ Probability that boys has an IQ of
more than 150
$=5 \%=\frac{5}{100}$
and $\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=$ Probability that girls has an IQ
of more than $150=10 \%=\frac{10}{100}$
The probability that the selected boy having IQ more than 150 is
$P\left(E_{1} / A\right)=\frac{P\left(E_{1}\right) P\left(A / E_{1}\right)}{P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)}$
[by Baye's theorem]
$=\frac{\frac{60}{100} \times \frac{5}{100}}{\left(\frac{60}{100} \times \frac{5}{100}\right)+\left(\frac{40}{400} \times \frac{10}{100}\right)}$
$=\frac{300}{300+400}=\frac{300}{700}=\frac{3}{7}$
Hence, the required probability is $3 / 7$
37. Now, given equation of lines are
$\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$
and $\vec{r}=(\hat{i}+\hat{j})+\mu(\hat{-} i+\hat{j}-2 \hat{k})$
On comparing these equations with standard equation of line, $\vec{r}=\vec{a}+\lambda \vec{b}$, we get
$\overrightarrow{a_{1}}=\hat{i}+\hat{j}, \overrightarrow{a_{2}}=\hat{i}+\hat{j}, \overrightarrow{b_{1}}=\hat{i}+2 \hat{j}-\hat{k}$ and
$\overrightarrow{b_{2}}=-\hat{i}+\hat{j}-2 \hat{k}$
Now, the equation of plane containing both the lines is given by

$$
\left(\vec{r}-\vec{a}_{1}\right) \cdot \vec{n}=0
$$

where, \vec{n} is normal to both the lines.
Clearly, $\vec{n}=\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ -1 & 1 & -2\end{array}\right|$
$=\hat{i}(-4+1)-\hat{j}(-2-1)+\hat{k}(1+2)$
$=-3 \hat{i}+3 \hat{j}+3 \hat{k}$
The required equation of plane is
$\overrightarrow{[r}-(\hat{i}+\hat{j})] \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=0$
$\Rightarrow \vec{r} \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=(\hat{i}+\hat{j}) \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})$
$\Rightarrow \vec{r} \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=-3+3=0$
$\Rightarrow \quad \vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0$

Now, the length of perpendicular from the point $(2,1,4)$ to the above plane
$=\frac{|(2 \hat{i}+\hat{j}+4 \hat{k}) \cdot(-\hat{i}+\hat{j}+\hat{k})|}{\sqrt{(-1)^{2}+1^{2}+1^{2}}}$
$=\frac{|-2+1+4|}{\sqrt{1+1+1}}=\frac{3}{\sqrt{3}}=\sqrt{3}$.units

Given points are A $(3,-4,-5)$, $B(2,-3,1)$
Direction ratios of line $A B$ are (3-2, $-4+3,-5-1$)
i.e ($1,-1,-6$)

Eq. of line $A B$ is,
$\frac{x-2}{1}=\frac{y+3}{-1}=\frac{z-1}{-6}=\lambda$
$\Rightarrow x=\lambda+2, y=-\lambda-3, z=-6 \lambda+1$
Thus, any point on the line is $(\lambda+2,-\lambda-3,-6 \lambda+1)$
This point lies on the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7 \mathrm{t}$
Therefore $2(\lambda+2)-\lambda-3-6 \lambda+1=7$
$\Rightarrow-5 \lambda+2=7$
$\Rightarrow-5 \lambda=5$
$\Rightarrow \lambda=-1$
Required point of intersection of line and plane is
$(-1+2,1-3,6+1)$
(1, - 2, 7)
38. To Maximize $Z=4 x+y$
subject to the constraints:
$x+y \leq 50$
$3 x+y \leq 90$
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
The shaded region in a figure is the feasible region determined by the system of constraints (ii) to (iv). We observe that the feasible region OABC is bounded. So, we now use Corner Point Method to determine the maximum value of Z.
The coordinates of the corner points O, A, B and C are $(0,0),(30,0),(20,30)$ and $(0,50)$ respectively. Now we evaluate Z at each corner point.

Corner Point	Corresponding value of Z
$(0,0)$	0
$(30,0)$	120
$(20,30)$	110
$(0,50)$	50

Hence, maximum value of Z is 120 at the point $(30,0)$.
OR
Let x trunks of first type and y trunks of second type were manufactured. Number of trunks cannot be negative. Therefore,
$x, y \geq 0$
According to the question, the given information can be tabulated as

	Machine A (hrs)	Machine B (hrs)
First type(x)	3	3
Second type(y)	3	2
Availability	18	15

Therefore, the constraints are
$3 x+3 y \leq 18$
$3 x+2 y \leq 15$
He earns a profit of ₹30 and ₹25 per trunk of the first type and the second type respectively. Therefore, profit gained by him from x trunks of first type and y trunks of second type is ₹30x and ₹ $25 y$ respectively.
Total profit $=\mathrm{z}=30 \mathrm{x}+25 \mathrm{y}$
which is to be maximised Thus, the mathematical formulation of the given linear programmimg problem is Max $z=30 x+25 y$
subject to
$3 x+3 y \leq 18$
$3 x+2 y \leq 15$
$\mathrm{x}, \mathrm{y} \geq 0$
First we will convert inequations into equations as follows:
$3 x+3 y=18,3 x+2 y=15, x=0$ and $y=0$
Region represented by $3 x+3 y \leq 18$ The line $3 x+3 y=18$ meets the coordinate axes at $A_{1}(6,0)$ and $\mathrm{B}_{1}(0,6)$
respectively. By joining these points we obtain the line $3 x+3 y=18$. Clearly $(0,0)$ satisfies the $3 x+3 y=18$. So, the region which contains the origin represents the solution set of the inequation $3 x+3 y \leq 18$
Region represented by $3 \mathrm{x}+2 \mathrm{y} \leq 15$:
The line $3 x+2 y=15$ meets the coordinate axes at $C_{1}(5,0)$ and $D_{1}\left(0, \frac{15}{2}\right)$ respectively. By joining these points we obtain the line
$3 x+2 y=15$. Clearly (0,0) satisfies the inequation $3 x+2 y \leq 15$. So, the region which contains the origin represents the solution set of the inequation $3 x+2 y \leq 15$
Region represented by $\mathrm{x} \geq 0$ and $\mathrm{y} \geq 0$:
since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x \geq 0$, and $y \geq 0$
The feasible region determined by the system of constraints $3 x+3 y \leq 18,3 x+2 y \leq 15, x \geq 0$ and $y \geq 0$ are as follows.

The corner points are $\mathrm{O}(0,0), \mathrm{B}_{1}(0,6), \mathrm{E}_{1}(3,3)$ and $\mathrm{C}_{1}(5,0)$
The values of Z at these corner points are as follows
Corner point: Z = 30x $+25 y$
0:0
$\mathrm{B}_{1}: 150$
$\mathrm{E}_{1}: 165$
$C_{1}: 150$
The maximum value of Z is 165 which is attained at $E_{1}(3,3)$
Thus, the maximum profit is ₹ 165 obtained when 3 units of each type of trunk is manufactured.

